Bocquet, Sebastian; Heitmann, Katrin; Habib, Salman; Lawrence, Earl; Uram, Thomas; Frontiere, Nicholas; Pope, Adrian; Finkel, Hal
(2020):
The MiraTitan Universe. III. Emulation of the Halo Mass Function.
In: Astrophysical Journal, Vol. 901, No. 1, 5

Full text not available from 'Open Access LMU'.
Abstract
We construct an emulator for the halo mass function over group and cluster mass scales for a range of cosmologies, including the effects of dynamical dark energy and massive neutrinos. The emulator is based on the recently completed MiraTitan Universe suite of cosmological Nbody simulations. The main set of simulations spans 111 cosmological models with 2.1 Gpc boxes. We extract halo catalogs in the redshift range z = [0.0, 2.0] and for masses M200c >= 10(13)M(circle dot)/h. The emulator covers an eightdimensional hypercube spanned by {Omega(m)h(2), Omega(b)h(2), Omega(nu)h(2), sigma(8), h, n(s), w(0), w(a)};spatial flatness is assumed. We obtain smooth halo mass functions by fitting piecewise secondorder polynomials to the halo catalogs and employ Gaussian process regression to construct the emulator while keeping track of the statistical noise in the input halo catalogs and uncertainties in the regression process. For redshifts z less than or similar to 1, the typical emulator precision is better than 2% for 10(13)10(14)M(circle dot)/h and <10<^> M similar or equal to 101(circle dot)(54)/h. For comparison, fitting functions using the traditional universal form for the halo mass function can be biased at up to 30% at M similar or equal to 10(144)M(circle dot)/h for z = 0. Our emulator is publicly available at https://github.com/SebastianBocquet/MiraTitanHMFemulator.