Abstract
Based on our recently published range-separated random phase approximation (RPA) functional [Kreppel et al., "Range-separated density-functional theory in combination with the random phase approximation: An accuracy benchmark," J. Chem. Theory Comput. 16, 2985-2994 (2020)], we introduce self-consistent minimization with respect to the one-particle density matrix. In contrast to the range-separated RPA methods presented so far, the new method includes a long-range nonlocal RPA correlation potential in the orbital optimization process, making it a full-featured variational generalized Kohn-Sham (GKS) method. The new method not only improves upon all other tested RPA schemes including the standard post-GKS range-separated RPA for the investigated test cases covering general main group thermochemistry, kinetics, and noncovalent interactions but also significantly outperforms the popular G(0)W(0) method in estimating the ionization potentials and fundamental gaps considered in this work using the eigenvalue spectra obtained from the GKS Hamiltonian.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
ISSN: | 0021-9606 |
Sprache: | Englisch |
Dokumenten ID: | 90027 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:33 |
Letzte Änderungen: | 25. Jan. 2022, 09:33 |