Abstract
Nickel compounds are among the most frequently used co-catalysts for photocatalytic water splitting. By loading Ni(II) precursors, submonolayer Ni(OH)(2) was uniformly distributed onto photocatalytic [Ca2Nb3O10](-) nanosheets. Further heating of the nanocomposite was studied both ex situ in various gas environments and in situ under vacuum in the scanning transmission electron microscope. During heating in non-oxidative environments including H-2, argon and vacuum, Ni nanoparticles form at >= 200 degrees C, and they undergo Ostwald ripening at >= 500 degrees C. High resolution imaging and electron energy loss spectroscopy revealed a NiO shell around the Ni core. Ni loading of up to 3 wt% was demonstrated to enhance the rates of photocatalytic hydrogen evolution. After heat treatment, a further increase in the reaction rate can be achieved thanks to the Ni core/NiO shell nanoparticles and their large separation.
| Dokumententyp: | Zeitschriftenartikel | 
|---|---|
| Fakultät: | Chemie und Pharmazie > Department Chemie | 
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie | 
| Sprache: | Englisch | 
| Dokumenten ID: | 90068 | 
| Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022 09:33 | 
| Letzte Änderungen: | 25. Jan. 2022 09:33 | 
		
	