Logo Logo
Switch Language to German

Kever, Loic; Bass, Andrew H.; Parmentier, Eric and Chagnaud, Boris P. (2020): Neuroanatomical and neurophysiological mechanisms of acoustic and weakly electric signaling in synodontid catfish. In: Journal of Comparative Neurology, Vol. 528, No. 15: pp. 2602-2619

Full text not available from 'Open Access LMU'.


To what extent do modifications in the nervous system and peripheral effectors contribute to novel behaviors? Using a combination of morphometric analysis, neuroanatomical tract-tracing, and intracellular neuronal recording, we address this question in a sound-producing and a weakly electric species of synodontid catfish, Synodontis grandiops, and Synodontis nigriventris, respectively. The same peripheral mechanism, a bilateral pair of protractor muscles associated with vertebral processes (elastic spring mechanism), is involved in both signaling systems. Although there were dramatic species differences in several morphometric measures, electromyograms provided strong evidence that simultaneous activation of paired protractor muscles accounts for an individual sound and electric discharge pulse. While the general architecture of the neural network and the intrinsic properties of the motoneuron population driving each target was largely similar, differences could contribute to species-specific patterns in electromyograms and the associated pulse repetition rate of sounds and electric discharges. Together, the results suggest that adaptive changes in both peripheral and central characters underlie the transition from an ancestral sound to a derived electric discharge producing system, and thus the evolution of a novel communication channel among synodontid catfish. Similarities with characters in other sonic and weakly electric teleost fish provide a striking example of convergent evolution in functional adaptations underlying the evolution of the two signaling systems among distantly related taxa.

Actions (login required)

View Item View Item