Logo Logo
Switch Language to German

Hertel, Anne G.; Royaute, Raphael; Zedrosser, Andreas and Müller, Thomas (2020): Biologging reveals individual variation in behavioural predictability in the wild. In: Journal of Animal Ecology, Vol. 90, No. 3: pp. 723-737

Full text not available from 'Open Access LMU'.


Recent research highlights the ecological importance of individual variation in behavioural predictability. Individuals may not only differ in their average expression of a behavioural trait (their behavioural type) and in their ability to adjust behaviour to changing environmental conditions (individual plasticity), but also in their variability around their average behaviour (predictability). However, quantifying behavioural predictability in the wild has been challenging due to limitations of acquiring sufficient repeated behavioural measures. We here demonstrate how common biologging data can be used to detect individual variation in behavioural predictability in the wild and reveal the coexistence of highly predictable individuals along with unpredictable individuals within the same population. We repeatedly quantified two behaviours-daily movement distance and diurnal activity-in 62 female brown bears Ursus arctos tracked across 187 monitoring years. We calculated behavioural predictability over the short term (50 consecutive monitoring days within 1 year) and long term (across monitoring years) as the residual intra-individual variability (rIIV) of behaviour around the behavioural reaction norm. We tested whether predictability varies systematically across average behavioural types and whether it is correlated across functionally distinct behaviours, that is, daily movement distance and amount of diurnal activity. Brown bears showed individual variation in behavioural predictability from predictable to unpredictable individuals. For example, the standard deviation around the average daily movement distance within one monitoring year varied up to fivefold from 1.1 to 5.5 km across individuals. Individual predictability for both daily movement distance and diurnality was conserved across monitoring years. Individual predictability was correlated with behavioural type where individuals which were on average more diurnal and mobile were also more unpredictable in their behaviour. In contrast, more nocturnal individuals moved less and were more predictable in their behaviour. Finally, individual predictability in daily movement distance and diurnality was positively correlated, suggesting that individual predictability may be a quantitative trait in its own regard that could evolve and is underpinned by genetic variation. Unpredictable individuals may cope better with stochastic events and unpredictability may hence be an adaptive behavioural response to increased predation risk. Coexistence of predictable and unpredictable individuals may therefore ensure adaptable and resilient populations.

Actions (login required)

View Item View Item