Abstract
Understanding microstructural and strain evolutions induced by noble gas production in the nuclear fuel matrix or plasma-facing materials is crucial for designing next generation nuclear reactors, as they are responsible for volumetric swelling and catastrophic failure. We describe a multimodal approach combining synchrotron-based nanoscale X-ray imaging techniques with atomic-scale electron microscopy techniques for mapping chemical composition, morphology and lattice distortion in a single crystal W induced by Kr irradiation. We report that Kr-irradiated single crystal W undergoes surface deformation, forming Kr containing cavities. Furthermore, positive strain fields are observed in Kr-irradiated regions, which lead to compression of underlying W matrix. Published by Elsevier Ltd on behalf of Acta Materialia Inc.
Item Type: | Journal article |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences |
Subjects: | 500 Science > 550 Earth sciences and geology |
ISSN: | 1359-6462 |
Language: | English |
Item ID: | 90512 |
Date Deposited: | 25. Jan 2022, 09:35 |
Last Modified: | 25. Jan 2022, 09:35 |