Abstract
In this thesis, confidence sets for different nonparametric regression problems with change-points are developed. Uniform and pointwise asymptotic confidence bands for the jump-location-curve in a boundary fragment model using methods from M-estimation and Gaussian approximation are constructed for the rotated difference kernel estimator. In addition, estimation of the location and of the height of the jump in some derivative of a regression curve is considered. Optimal convergence rates as well as the joint asymptotic normal distribution of estimators based on the zero-crossing-time technique are established over certain Hölder-classes. Further, joint as well as marginal asymptotic confidence sets which are honest and adaptive for these parameters over specific Hölder-classes are constructed. The finite-sample performance is investigated in simulation studies, and real data illustrations are given.
Item Type: | Thesis (Dissertation) |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Computer Science > Artificial Intelligence and Machine Learning |
Subjects: | 000 Computer science, information and general works > 004 Data processing computer science |
Language: | English |
Item ID: | 91625 |
Date Deposited: | 25. Mar 2022, 09:51 |
Last Modified: | 25. Mar 2022, 09:51 |