Abstract
We propose a generalization of multilabel classification that we refer to as graded multilabel classification. The key idea is that, instead of requesting a yes-no answer to the question of class membership or, say, relevance of a class label for an instance, we allow for a graded membership of an instance, measured on an ordinal scale of membership degrees. This extension is motivated by practical applications in which a graded or partial class membership is natural. Apart from introducing the basic setting, we propose two general strategies for reducing graded multi-label problems to conventional (multilabel) classification problems. Moreover, we address the question of how to extend performance metrics commonly used in multilabel classification to the graded setting, and present first experimental results.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
Ort: | Madison, WI |
Bemerkung: | ISBN 978-1-60558-907-7 |
Sprache: | Englisch |
Dokumenten ID: | 91748 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Apr. 2022 06:15 |
Letzte Änderungen: | 15. Okt. 2024 13:38 |