Volltext auf 'Open Access LMU' nicht verfügbar.
Abstract
This paper addresses a data integration problem: given several mutually consistent datasets each of which measures a subset of the variables of interest, how can one construct a probabilistic model that fits the data and gives reasonable answers to questions which are under-determined by the data? Here we show how to obtain a Bayesian network model which represents the unique probability function that agrees with the probability distributions measured by the datasets and otherwise has maximum entropy. We provide a general algorithm, OBN-cDS, which offers substantial efficiency savings over the standard brute-force approach to determining the maximum entropy probability function. Furthermore, we develop modifications to the general algorithm which enable further efficiency savings but which are only applicable in particular situations. We show that there are circumstances in which one can obtain the model (i) directly from the data; (ii) by solving algebraic problems; and (iii) by solving relatively simple independent optimisation problems.
Dokumententyp: |
Zeitschriftenartikel
|
Fakultät: |
Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP)
Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Logic
Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Philosophy of Artificial Intelligence
Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Philosophy of Science
Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Epistemology |
Themengebiete: |
000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme
100 Philosophie und Psychologie > 100 Philosophie
100 Philosophie und Psychologie > 120 Epistemologie
100 Philosophie und Psychologie > 160 Logik
500 Naturwissenschaften und Mathematik > 510 Mathematik |
Dokumenten ID: |
92226 |
Datum der Veröffentlichung auf Open Access LMU: |
30. Mai 2022, 12:26 |
Letzte Änderungen: |
30. Mai 2022, 12:26 |
- Dokument bearbeiten