Abstract
In this paper, we introduce iART: an open Web platform for art-historical research that facilitates the process of comparative vision. The system integrates various machine learning techniques for keyword- and content-based image retrieval as well as category formation via clustering. An intuitive GUI supports users to define queries and explore results. By using a state-of-the-art cross-modal deep learning approach, it is possible to search for concepts that were not previously detected by trained classification models. Art-historical objects from large, openly licensed collections such as Amsterdam Rijksmuseum and Wikidata are made available to users.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Form of publication: | Publisher's Version |
Faculties: | Mathematics, Computer Science and Statistics > Computer Science > Artificial Intelligence and Machine Learning |
Subjects: | 000 Computer science, information and general works > 000 Computer science, knowledge, and systems |
URN: | urn:nbn:de:bvb:19-epub-92516-9 |
Language: | English |
Item ID: | 92516 |
Date Deposited: | 09. Aug 2022 18:10 |
Last Modified: | 27. Nov 2024 15:53 |