Abstract
We advocate the use of conformal prediction (CP) to enhance rule-based multi-label classification (MLC). In particular, we highlight the mutual benefit of CP and rule learning: Rules have the ability to provide natural (non-)conformity scores, which are required by CP, while CP suggests a way to calibrate the assessment of candidate rules, thereby supporting better predictions and more elaborate decision making. We illustrate the potential usefulness of calibrated conformity scores in a case study on lazy multi-label rule learning.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme |
URN: | urn:nbn:de:bvb:19-epub-92519-9 |
ISSN: | 0302-9743 |
Ort: | Cham |
Sprache: | Englisch |
Dokumenten ID: | 92519 |
Datum der Veröffentlichung auf Open Access LMU: | 09. Sep. 2022 11:21 |
Letzte Änderungen: | 04. Dez. 2024 10:36 |