Abstract
In the context of multi-label classification (MLC), rule-based learning algorithms have a number of appealing properties that are not, at least not as a whole, shared by other approaches. This includes the potential interpretability of rules, their ability to model (local) label dependencies in a flexible way, and the facile customization of a predictor to different loss functions. In this paper, we present a modular framework for rule-based MLC and discuss related challenges and opportunities for multi-label rule learning.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme |
ISSN: | 0302-9743 |
Ort: | Cham |
Sprache: | Englisch |
Dokumenten ID: | 92525 |
Datum der Veröffentlichung auf Open Access LMU: | 16. Feb. 2023, 15:33 |
Letzte Änderungen: | 16. Feb. 2023, 15:33 |