Logo Logo
Hilfe
Hilfe
Switch Language to English

Dargnies, Marie-Pierre; Hakimov, Rustamdjan und Kübler, Dorothea (9. September 2022): Aversion to Hiring Algorithms: Transparency, Gender Profiling, and Self-Confidence. Collaborative Research Center Transregio 190, Discussion Paper No. 334 [PDF, 474kB]

[thumbnail of 334-2.pdf]
Vorschau
Download (474kB)

Abstract

We run an online experiment to study the origins of algorithm aversion. Participants are either in the role of workers or of managers. Workers perform three real-effort tasks: task 1, task 2, and the job task which is a combination of tasks 1 and 2. They choose whether the hiring decision between themselves and another worker is made either by a participant in the role of a manager or by an algorithm. In a second set of experiments, managers choose whether they want to delegate their hiring decisions to the algorithm. In the baseline treatments, we observe that workers choose the manager more often than the algorithm, and managers also prefer to make the hiring decisions themselves rather than delegate them to the algorithm. When the algorithm does not use workers' gender to predict their job task performance and workers know this, they choose the algorithm more often. Providing details on how the algorithm works does not increase the preference for the algorithm, neither for workers nor for managers. Providing feedback to managers about their performance in hiring the best workers increases their preference for the algorithm, as managers are, on average, overconfident.

Dokument bearbeiten Dokument bearbeiten