Abstract
Background. Aircraft cabins are special environments. Passengers sit in close proximity in a space with low pressure that they cannot leave. The cabin is ventilated with a mixture of outside and recirculated air. The volume of outside air impacts the carbon footprint of flying. Higher recirculation air rates could be considered to save energy and divert less kerosene from producing thrust. Objectives. To investigate whether higher recirculation air rates in aircraft cabins negatively affect passengers' health and well-being and if occupancy plays a role in this. Methods. In a 2 (occupancy: full and half-occupied) X 4 (ventilation regime) factorial design with stratified randomization, participants were exposed in an aircraft segment in a low-pressure tube during a four-hour simulated flight. Ventilation regimes consisted of increasing proportions of recirculated air up to a maximum CO2 concentration of 4200 ppm. Participants rated comfort, health symptoms, and sleepiness multiple times. Heart rate (variability), as stress marker, was measured continuously. Results. 559 persons representative of flight passengers regarding age (M=42.7, SD=15.9) and sex (283 men) participated. ANCOVA results showed hardly any effect of both factors on self-reported health symptoms, strong main effects of occupancy on comfort measures, and interaction effects for sleepiness and physiological stress parameters: Participants in the half-occupied cabin hardly reacted to increased recirculation air rates and show overall more favorable responses. Participants in the fully occupied cabin reported higher sleepiness and had stress reactions when the recirculation air rate was high. Discussion. This large-scale RCT shows the importance of occupancy, a previously neglected factor in indoor air research. The proximity of other people seems to increase stress and exacerbate reactions to air quality. Further studies on causal pathways are needed to determine if recirculation air rates can be increased to reduce the carbon footprint of flying without detrimental effects on passengers.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 820872 |
EU-Projekte: | Horizon 2020 > Sonstige > Joint Technology Initiative > Joint Technology Initiative - Clean Sky 2 |
Publikationsform: | Publisher's Version |
Keywords: | cabin air quality, proxemics, comfort, sleepiness, health symptoms, heart rate variability |
Fakultät: | Medizin > Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-93980-6 |
ISSN: | 0013-9351 |
Bemerkung: | Clean Sky 2 Joint Undertaking, European Union (EU), Horizon 2020 |
Sprache: | Englisch |
Dokumenten ID: | 93980 |
Datum der Veröffentlichung auf Open Access LMU: | 23. Dez. 2022, 14:32 |
Letzte Änderungen: | 25. Apr. 2024, 05:40 |
Literaturliste: | Abramson, J.H., 2011. WINPEPI updated: computer programs for epidemiologists, and their teaching potential. Epidemiol. Perspect. Innov. 8(1),1. https://doi.org/10.1186/1742-5573-8-1. Aeschbacher, S., Schoen, T., Dörig, L., Kreuzmann, R., Neuhauser, C., Schmidt-Trucksäss, A., Probst-Hensch, N.M., Risch, M., Risch, L., Conen, D., 2017. Heart rate, heart rate variability and inflammatory biomarkers among young and healthy adults. Ann. Med. 49(1), 32-41. https://doi.org/10.1080/07853890.2016.1226512. Allen, J.G., MacNaughton, P., Satish, U., Santanam, S., Vallarino, J., Spengler, J.D., 2016. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments. Environ. Health Perspect. 124(6), 805-812. https://doi.org/10.1289/ehp.1510037. Allen, J.G., MacNaughton, P., Cedeno-Laurent, J.G., Cao, X., Flanigan, S., Vallarino, J., Rueda, F., Donnelly-McLay, D., Spengler, J.D., 2019. Airplane pilot flight performance on 21 maneuvers in a flight simulator under varying carbon dioxide concentrations. J. Expo. Sci. Environ. Epidemiol. 29(4), 457-468. https://doi.org/10.1038/s41370-018-0055-8. Ahmadpour, N., Kühne, M., Robert, J.M., Vink, P., 2016. Attitudes towards personal and shared space during the flight. Work. 54(4), 981-987. https://doi.org/10.3233/WOR-162346. Ahmadpour, N., Lindgaard, G., Robert, J.M., Pownall, B., 2014. The thematic structure of passenger comfort experience and its relationship to the context features in the aircraft cabin. Ergonomics. 57(6), 801-815. https://doi.org/10.1080/00140139.2014.899632. ASHRAE. 2007. Standard 161-Air Quality Within Commercial Aircraft. ASHRAE: Atlanta, GA, USA. Baloch, R.M., Maesano, C.N., Christoffersen, J., Banerjee, S., Gabriel, M., Csobod, É., de Oliveira Fernandes, E., Annesi-Maesano, I., SINPHONIE Study group, 2020. Indoor air pollution, physical and comfort parameters related to schoolchildren's health: Data from the European SINPHONIE study. Sci. Total Environ. 739:139870. https://doi.org/10.1016/j.scitotenv.2020.139870. Bouwens, J., Hiemstra-van Mastrigt, S., Vink,, P., 2018. Ranking of Human Senses in Relation to Different In-flight Activities Contributing to the Comfort Experience of Airplane Passengers. Int. J. Aviat. Aeronaut. Aerosp. 5(2), 9. https://doi.org/10.15394/ijaaa.2018.1228 Cao, X., MacNaughton, P., Cadet, L.R., Cedeno-Laurent, J.G., Flanigan, S., Vallarino, J., Donnelly-McLay, D., Christiani, D.C., Spengler, J.D., Allen, J.G., 2019. Heart Rate Variability and Performance of Commercial Airline Pilots during Flight Simulations. Int. J. Environ. Res. Public Health. 16(2), 237. https://doi.org/10.3390/ijerph16020237. Chandola, T., Heraclides, A., Kumari, M., 2010. Psychophysiological biomarkers of workplace stressors. Neurosci. Biobehav. Rev. 35(1), 51-57. https://doi.org/10.1016/j.neubiorev.2009.11.005. Chen, R., Fang, L., Liu, J., Herbig, B., Norrefeldt, V., Mayer, F., Fox, R., Wargocki, P., 2021. Cabin air quality on non-smoking commercial flights: A review of published data on airborne pollutants. Indoor Air. 31(4), 926-957. https://doi.org/10.1111/ina.12831. Cincinelli, A, Martellini, T., 2017. Indoor Air Quality and Health. Int. J. Environ. Res. Public Health. 14(11),1286. https://doi.org/10.3390/ijerph14111286. Cohen, J., 1992. A power primer. Psychol. Bull. 112(1),155-159. https://doi.org/10.1037//0033-2909.112.1.155. DFG (Deutsche Forschungsgemeinschaft), 2021. List of MAK and BAT Values 2021. Maximum Concentrations and Biological Tolerance Values at the Workplace. Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area. Report No. 57, https://doi.org/10.34865/mbwl_2021_eng Crump, D., Harrison, P., Walton, C., 2011. Aircraft Cabin Air Sampling Study. Cranfield University, UK, Institute of Environment and Health. EASA, 2019. CS-25 Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes, Amendment 23. Ellert, U., Lampert, T., Ravens-Sieberer, U., 2005. Messung der gesundheitsbezogenen Lebensqualität mit dem SF-8. Eine Normstichprobe für Deutschland [Measuring health-related quality of life with the SF-8. Normal sample of the German population]. Bundesgesundheitsbl. – Gesundheitsforsch. - Gesundheitsschutz. 48(12), 1330-1337. https://doi.org/10.1007/s00103-005-1168-5. Ellis, P.D., 2010. The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge, New York: Cambridge University Press. FAA (Federal Aviation Administration), 2019. Federal Aviation Regulations (FAR) Part 25 Airworthiness standards: Transport category airplanes, Washington, DC. Faul, F., Erdfelder, E., Buchner, A., Lang, A.G., 2009. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods. 41(4), 1149-1160. https://doi.org/10.3758/BRM.41.4.1149. Firstbeat Technologies Ltd., 2014. Stress and Recovery Analysis Method based on 24-hour Heart Rate Variability. Available at: https://assets.firstbeat.com/firstbeat/uploads/2015/10/Stress-and-recovery_white-paper_20145.pdf. Fisk, W., Wargocki, P., Zhang, X., 2019. Do Indoor CO2 Levels Directly Affect Perceived Air Quality, Health, or Work Performance? ASHRAE J., 61, 70-77. Flughafenverband ADV, 2015. Airport Travel Survey 2015. Zahlen, Fakten und Trends. Berlin: Arbeitsgemeinschaft Deutscher Verkehrsflughäfen e. V. Available at: https://adv.aero/wp-content/uploads/2015/12/ADV-Broschuere_Airport_Travel_Survey_2015.pdf Flughafenverband ADV, 2018. Airport Travel Survey 2018. Zahlen, Fakten und Trends. Berlin: Arbeitsgemeinschaft Deutscher Verkehrsflughäfen e. V. Available at: https://www.adv.aero/wp-content/uploads/2016/02/Airport-Travel-Survey-2018_Brosch%C3%BCre.pdf Grün, G., Hellwig, R., Trimmel, M., Holm, A., 2008. Interrelations of Comfort Parameters in a Simulated Aircraft Cabin. Proceedings of Indoor Air 2008, the 11th International Conference on Indoor Air Quality and Climate, Copenhagen, Denmark. Paper ID: 77 Guan, J., Gao, K., Wang, C., Yang, X., Lin, C.-H., Lu, C., Gao, P., 2014a. Measurements of volatile organic compounds in aircraft cabins. Part I: Methodology and detected VOC species in 107 commercial flights. Build. Environ. 72, 154-161, https://doi.org/10.1016/j.buildenv.2013.11.002 Guan, J., Wang, C., Gao, K., Yang, X., Lin, C.-H., Lu, C., 2014b. Measurements of volatile organic compounds in aircraft cabins. Part II: Target list, concentration levels and possible influencing factors. Build. Environ. 75, 170-175, https://doi.org/10.1016/j.buildenv.2014.01.023 Guan, J., Li, Z., Yang, X., 2015. Net in-cabin emission rates of VOCs and contributions from outside and inside the aircraft cabin, Atmos. Environ. 111, 1-9, https://doi.org/10.1016/j.atmosenv.2015.04.002 Hall, E.T., 1966. The Hidden Dimension. Garden City, NY: Doubleday. Herbig, B., Jörres, R.A., Schierl, R., Simon, M., Langner, J., Seeger, S., Nowak, D., Karrasch, S., 2018. Psychological and cognitive effects of laser printer emissions: A controlled exposure study. Indoor Air. 28(1), 112-124. https://doi.org/10.1111/ina.12429. Herbig, B., Schneider, A., Nowak, D., 2016. Does office space occupation matter? The role of the number of persons per enclosed office space, psychosocial work characteristics, and environmental satisfaction in the physical and mental health of employees. Indoor Air. 26(5), 755-767. https://doi.org/10.1111/ina.12263. Hunt, E.H., Reid, D.H., Space, D.R., Tilton, F.E., 1995. Commercial Airliner Environmental Control System Engineering Aspects of Cabin Air Quality. Paper A27 presented at Aerospace Medical Association 66th Annual Scientific Meeting, Anaheim, California. [available online https://www.smartcockpit.com/docs/Engineering_Aspects_of_Cabin_Air_Quality.pdf] Ideal Cabin Environment (ICE) Research Consortium of the European Community 6th Framework Programme, 2017. Health Effects of Airline Cabin Environments in Simulated 8-Hour Flights. Aerosp. Med. Hum. Perform. 88(7), 651-656. https://doi.org/10.3357/AMHP.4366.2017. Jacobson, T.A., Jasdeep, J.S., Hernke, M.T., Braun, R.K., Meyer, K.C., Funk, W.E., 2019. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2(8), 691-701, https://doi.org/10.1038/s41893-019-0323-1. Järvelin-Pasanen, S., Sinikallio, S., Tarvainen, M.P., 2018. Heart rate variability and occupational stress-systematic review. Ind. Health. 56(6), 500-511. https://doi.org/10.2486/indhealth.2017-0190. James, O., Delfabbro, P., King, D.L., 2021. A Comparison of Psychological and Work Outcomes in Open-Plan and Cellular Office Designs: A Systematic Review. SAGE Open. January 2021, https://doi.org/10.1177/2158244020988869 Jarczok, M.N., Jarczok, M., Mauss, D., Koenig, J., Li, J., Herr, R.M., Thayer, J.F., 2013. Autonomic nervous system activity and workplace stressors--a systematic review. Neurosci. Biobehav. Rev. 37(8), 1810-1823. https://doi.org/10.1016/j.neubiorev.2013.07.004. Kajtár, L., Herczeg, L., 2012. Influence of carbon-dioxide concentration on human well-being and intensity of mental work. QJ Hung. Meteorol. Serv. 116, 145-169. Kiesswetter, E., 1999. 'Multiple chemical sensitivity', the relevance of toxic, neurobiological and psychic effect mechanisms. Zentralbl. Hyg. Umweltmed. 202(2-4), 191-205. Kiesswetter, E., Sietmann, B., Golka, K., Zupanic, M., Seeber, A., 1997. Discriminant validity of a new questionnaire for chemical and general environment sensitivity. Neurotoxicol. 18, 902‐903. Lewis, L., Patel, H., D'Cruz, M., Cobb, S., 2017. What makes a space invader? Passenger perceptions of personal space invasion in aircraft travel. Ergonomics. 60(11), 1461-1470. https://doi.org/10.1080/00140139.2017.1313456. Liu, J., Yu, S., Chu, J., Gou, B., 2017. Identifying and analyzing critical factors impacting on passenger comfort employing a hybrid model. Hum. Factors Man. 27(6), 289–305. https://doi.org/10.1002/hfm.20712 Lowther, S.D., Dimitroulopoulou, S., Foxall, K., Shrubsole, C., Cheek, E., Gadeberg, B., Sepai, O., 2021. Low Level Carbon Dioxide Indoors—A Pollution Indicator or a Pollutant? A Health-Based Perspective. Environments, 8, 125. https://doi.org/10.3390/environments8110125 Maniscalco, J., Hoffmeyer, F., Monsé, C., Jettkant, B., Marek, E., Brüning, T., Bünger, J., Sucker, K., 2021. Physiological responses, self-reported health effects, and cognitive performance during exposure to carbon dioxide at 20 000 ppm. Indoor Air. 32(1), e12939. https://doi.org/10.1111/ina.12939. McDowell, I., 2010. Measures of self-perceived well-being. J. Psychosom. Res. 69(1), 69-79. https://doi.org/10.1016/j.jpsychores.2009.07.002. National Research Council, 2002. The airliner cabin environment and the health of passengers and crew. Washington, DC: National Academies Press. Newsham, G.R, Veitch, J.A, Charles, K.E., 2008. Risk factors for dissatisfaction with the indoor environment in open-plan offices: an analysis of COPE field study data. Indoor Air. 18(4), 271-282. https://doi.org/10.1111/j.1600-0668.2008.00525.x. Norrefeldt, V., Mayer, F., Herbig, B., Ströhlein, R., Wargocki, P., Lei, F., 2021. Effect of Increased Cabin Recirculation Airflow Fraction on Relative Humidity, CO2 and TVOC. Aerospace, 8, 15. https://doi.org/10.3390/aerospace8010015. Nunan, D., Sandercock, G.R., Brodie, D.A., 2010. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin. Electrophysiol. 33(11), 1407-1417. https://doi.org/10.1111/j.1540-8159.2010.02841.x. Pang, L., Zhang, J., Cao, X., Wang, X., Liang, J., Zhang, L., Guo, L., 2021. The effects of carbon dioxide exposure concentrations on human vigilance and sentiment in an enclosed workplace environment. Indoor Air. 31(2), 467-479. https://doi.org/10.1111/ina.12746. Parak, J., Korhonen, I., 2013. Accuracy of Firstbeat Bodyguard 2 beat-to-beat heart rate monitor. White paper by Firstbeat Technologies Ltd. Available at: https://assets.firstbeat.com/firstbeat/uploads/2015/11/white_paper_bodyguard2_final.pdf Robert-Koch-Institut, 2008. DEGS – Studie zur Gesundheit Erwachsener in Deutschland. Gesundheitsfragebogen 18 bis 64 Jahre (Stand: März 2009). Berlin: Robert-Koch-Institut. Sammito, S., Thielmann, B., Klussmann, A., Deußen, A., Braumann, K.M., Böckelmann, I., 2021. S2k Leitlinie: Nutzung der Herzschlagfrequenz und der Herzfrequenzvariabilität in der Arbeitsmedizin und der Arbeitswissenschaften. AWMF, Reg. Nr. 002-042. Satish, U., Mendell, M.J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., Fisk, W.J., 2012. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 120(12), 1671-1677. https://doi.org/10.1289/ehp.1104789. Schmohl, A., Buschhaus, M., Norrefeldt, V., Johann, S., Burdack-Freitag, A., Scherer, C.R., Vega Garcia, P.A., Schwitalla, C., 2022. Incremental Evaluation Model for the Analysis of Indoor Air Measurements. Atmosphere, 13, 1655. https://doi.org/10.3390/atmos13101655 Schnuch, A., Oppel, E., Oppel, T., Römmelt, H., Kramer, M., Riu, E., Darsow, U., Przybilla, B., Nowak, D., Jörres, R.A., 2010. Experimental inhalation of fragrance allergens in predisposed subjects: effects on skin and airways. Br. J. Dermatol. 162(3), 598-606. https://doi.org/10.1111/j.1365-2133.2009.09510.x. Schuchardt, S., Bitsch, A., Koch, W., Rosenberger, W., 2017. Preliminary Cabin Air Quality Measurement Campaign (CAQ II), Supplementary study on B787, Final Report EASA.2014.C15. SU01 Shaffer, F., Ginsberg, J.P., 2017. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health. 5, 258. https://doi.org/10.3389/fpubh.2017.00258. Shen, J., Kong, M., Dong, B., Birnkrant, M.J., Zhang, J., 2021. A systematic approach to estimating the effectiveness of multi-scale IAQ strategies for reducing the risk of airborne infection of SARS-CoV-2. Build. Environ. 200, 107926. https://doi.org/10.1016/j.buildenv.2021.107926 Spinazzè, A., Campagnolo, D., Cattaneo, A., Urso, P., Sakellaris, I.A., Saraga, D.E., Mandin, C., Canha, N., Mabilia, R., Perreca, E., Mihucz, V.G., Szigeti, T., Ventura, G., de Oliveira Fernandes, E., de Kluizenaar, Y., Cornelissen, E., Hänninen, O., Carrer, P., Wolkoff, P., Cavallo, D.M., Bartzis, J.G., 2020. Indoor gaseous air pollutants determinants in office buildings-The OFFICAIR project. Indoor Air. 30(1), 76-87. https://doi.org/10.1111/ina.12609. Strøm-Tejsen, P., Wyon, D.P., Lagercrantz, L., Fang, L., 2007. Passenger evaluation of the optimum balance between fresh air supply and humidity from 7-h exposures in a simulated aircraft cabin. Indoor Air. 17(2), 92-108. https://doi.org/10.1111/j.1600-0668.2006.00458.x. Strøm-Tejsen, P., Zukowska, D., Fang, L., Space, D.R., Wyon, D.P., 2008. Advantages for passengers and cabin crew of operating a gas-phase adsorption air purifier in 11-h simulated flights. Indoor Air. 18(3), 172-181. https://doi.org/10.1111/j.1600-0668.2007.00511.x. Sun, Y., Fang, L., Wyon, D.P., Wisthaler, A., Lagercrantz, L., Strøm-Tejsen, P., 2008. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins. Build. Environ. 43(3), 258-268. https://doi.org/10.1016/j.buildenv.2006.06.036. Tang, X., Misztal, P.K., Nazaroff, W.W., Goldstein, A.H., 2016. Volatile Organic Compound Emissions from Humans Indoors. Environ. Sci. Technol., 50(23), 12686–12694. https://doi.org/10.1021/acs.est.6b04415 Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, 1996. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 93 (5), 1043–1065. https://doi.org/10.1161/01.cir.93.5.1043. Vardoulakis, S., Giagloglou, E., Steinle, S., Davis, A., Sleeuwenhoek, A., Galea, K.S., Dixon, K., Crawford, J.O., 2020. Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review. Int. J. Environ. Res. Public Health. 17(23), 8972. https://doi.org/10.3390/ijerph17238972. Vehviläinen, T., Lindholm, H., Rintamäki, H., Pääkkönen, R., Hirvonen, A., Niemi, O., Vinha J., 2016. High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work. J. Occup. Environ. Hyg. 13(1), 19-29. https://doi.org/10.1080/15459624.2015.1076160. Veitch, J.A., Charles, K.E., Farley, K.M.J, Newsham, G.R., 2007. A model of satisfaction with open-plan office conditions: COPE field findings. J Environ Psychol. 27(3), 177-189. https://doi.org/10.1016/j.jenvp.2007.04.002 Ware, J.E., Kosinski, M., Dewey, J.E., Gandek, B., 2001. A manual for users of the SF-8 Health Survey. Lincoln, RI: Quality Metric Incorporated. Watson, D., Clark, L.A., Tellegen A., 1988. Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54(6), 1063-1070. https://doi.org/10.1037//0022-3514.54.6.1063. Yoshitake, H., 1973. Occupational fatigue-Approach from subjective symptom. Tokyo, Japan: The institute for science of labor (in Japanese). Yoshitake, H., 1978. Three characteristic patterns of subjective fatigue symptoms. Ergonomics. 21(3), 231-233. https://doi.org/10.1080/00140137808931718. Zavaglio, E., Le Cam, M., Thibaud, C., Quartarone, G., Zhu, Y., Franzini, G., Roux, P., Dinca, M., Walte, A., Rothe, P., 2019. Innovative Environmental Control System for Aircraft. In Proceedings of the 49th International Conference on Environmental Systems ICES-2019-171, Boston, MA, USA, 7–11 July 2019. https://hdl.handle.net/2346/84939 Zhang, X., Wargocki, P., Lian, Z., Thyregod, C., 2017. Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance. Indoor Air. 27(1), 47-64. https://doi.org/10.1111/ina.12284. Zubair, M., Ahmad, K.A., Riazuddin, V.N., 2014. A review on the impact of aircraft cabin air quality and cabin pressure on human wellbeing. Appl. Mech. Mater. 629, 388-394. https://doi.org/10.4028/www.scientific.net/AMM.629.388 |