Abstract
Functionalized graphene and hydroxyapatite fillers are proposed as reinforcing particles in light-cured adhesives for dental applications. Silica-silver-graphene (SiO2-Ag-Gr), silver-doped hydroxyapatite (HA-Ag), graphene and silver doped hydroxyapatite (HA-Ag-Gr), and regular silica (SiO2) as inorganic powders, together with bis-GMA (2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) oligomers, as main components of the organic matrix, were synthesized. Light field transmission electron microscopy and electron diffraction proved the successful synthesis of the powders. The experimental adhesives showed a positive influence on local biocompatibility up to 6 months in an in-vitro simulation of clinically relevant environmental conditions and aging. Bonding to human dentin reveal a particular fracture pattern with preferential adhesion to the restorative material in contrast to the gold standard adhesive used as reference, which adheres preferentially to the tooth structure. Bond strength was slightly lower, initial bond reliability slightly improved, and the morphology of interaction with tooth structure similar to the reference. Functionalized graphene and hydroxyapatite fillers in dental adhesives have demonstrated their potential for use in dental applications.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Keywords: | dentin adhesive; graphene; hydroxyapatite; bond strength; cytotoxicity; fractograph |
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-94331-1 |
Sprache: | Englisch |
Dokumenten ID: | 94331 |
Datum der Veröffentlichung auf Open Access LMU: | 24. Jan. 2023, 15:03 |
Letzte Änderungen: | 24. Jan. 2023, 15:03 |
Literaturliste: | 1] F.N. Hugo, N.J. Kassebaum, W. Marcenes, E. Bernabé, Role of dentistry in global health: challenges and research priorities, J. Dent. Res. 100 (7) (2021) 681–685, https://doi.org/10.1177/0022034521992011. [2] R. Montag, W. Dietz, S. Nietzsche, T. Lang, K. Weich, B.W. Sigusch, P. Gaengler, Clinical and micromorphologic 29-year results of Posterior composite restorations, J. Dent. Res. 97 (13) (2018) 1431–1437, https://doi.org/10.1177/0022034518788798. [3] U. Pallesen, J.W. van Dijken, A randomized controlled 27 years follow up of three resin composites in class II restorations, J. Dent. 43 (12) (2015) 1547–1558, https://doi.org/10.1016/j.jdent.2015.09.003. [4] H.V. Worthington, S. Khangura, K. Seal, M. Mierzwinski-Urban, A. Veitz-Keenan, P. Sahrmann, P.R. Schmidlin, D. Davis, Z. Iheozor-Ejiofor, M.G. Rasines Alcaraz, Direct composite resin fillings versus amalgam fillings for permanent posterior teeth, Cochrane Database Syst Rev 8(8) (2021) Cd005620.10.1002/14651858.CD005620.pub3. [5] M.A. Coulter, Minamata Convention on Mercury, Int. Legal Mater. 55 (3) (2016) 582–616, https://doi.org/10.5305/intelegamate.55.3.0582. [6] C.A. Stewart, Y. Finer, Biostable, antidegradative and antimicrobial restorative systems based on host-biomaterials and microbial interactions, Dent. Mater. 35 (1) (2019) 36–52, https://doi.org/10.1016/j.dental.2018.09.013. [7] D. Dionysopoulos, O. Gerasimidou, C. Papadopoulos, Current modifications of dental adhesive systems for composite resin restorations: a review in literature, Journal of Adhesion Science and Technology 36(5) (2022) 453-468.10.1080/01694243.2021.1924499. [8] B. Van Meerbeek, G. Willems, J.P. Celis, J.R. Roos, M. Braem, P. Lambrechts, G. Vanherle, Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area, J. Dent. Res. 72 (10) (1993) 1434–1442, https://doi.org/10.1177/00220345930720101401. [9] J.P. Davim, Biomedical Composites, De Gruyter, Berlin, Boston, 2013. [10] I. Farooq, S. Ali, S. Al-Saleh, E.M. AlHamdan, M.H. AlRefeai, T. Abduljabbar, F. Vohra, Synergistic Effect of Bioactive Inorganic Fillers in Enhancing Properties of Dentin Adhesives-A Review, Polymers 13(13) (2021).10.3390/polym13132169. [11] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (5696) (2004) 666–669, https://doi.org/10.1126/science.1102896. [12] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (3) (2007) 183–191, https://doi.org/10.1038/nmat1849. [13] A.M. Jastrze ̨ bska, P. Kurtycz, A.R. Olszyna, Recent advances in graphene family materials toxicity investigations, J. Nanoparticle Res. 14 (12) (2012) 1320, https://doi.org/10.1007/s11051-012-1320-8. [14] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics 81(1) (2009) 109-162.10.1103/RevModPhys.81.109. [15] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10 (8) (2011) 569–581, https://doi.org/10.1038/nmat3064. [16] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (5887) (2008) 385–388, https://doi.org/10.1126/science.1157996. [17] H. Xie, T. Cao, F.J. Rodríguez-Lozano, E.K. Luong-Van, V. Rosa, Graphene for the development of the next-generation of biocomposites for dental and medical applications, Dent. Mater. 33 (7) (2017) 765–774, https://doi.org/10.1016/j.dental.2017.04.008. [18] K.S. Novoselov, V.I. Fal0 ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature 490 (7419) (2012) 192–200, https://doi.org/10.1038/nature11458. [19] K. Chen, X. Tang, B. Jia, C. Chao, Y. Wei, J. Hou, L. Dong, X. Deng, T.H. Xiao, K. Goda, L. Guo, Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking, Nat. mater. (2022), https://doi.org/10.1038/s41563-022-01292-4. [20] N. Ilie, C. Sarosi, M.-C. Rosu, M. Moldovan, Synthesis and characterization of graphene oxide-zirconia (GO-ZrO2) and hydroxyapatite-zirconia (HA-ZrO2) nano-fillers for resin-based composites for load-bearing applications, J. Dent. 105 (2021), https://doi.org/10.1016/j.jdent.2020.103557 103557. [21] A.C. Ionescu, E. Brambilla, P.M. Pires, A. López-Castellano, A.M. Alambiaga-Caravaca, C. Lenardi, S. Sauro, Physical-chemical and microbiological performances of graphene-doped PMMA for CAD/CAM applications before and after accelerated aging protocols, Dent. Mater. (2022), https://doi.org/10.1016/j.dental.2022.06.032. [22] S.-M. Lee, K.-H. Yoo, S.-Y. Yoon, I.-R. Kim, B.-S. Park, W.-S. Son, C.-C. Ko, S.-A. Son, Y.-I. Kim, Enamel anti-demineralization effect of orthodontic adhesive containing bioactive glass and graphene oxide: an in-vitro study, Materials 11 (9) (2018) 1728. [23] Y.F. AlFawaz, B. Almutairi, H.F. Kattan, M.S. Zafar, I. Farooq, M. Naseem, F. Vohra, T. Abduljabbar, Dentin Bond Integrity of Hydroxyapatite Containing Resin Adhesive Enhanced with Graphene Oxide Nano-Particles-An SEM, EDX, Micro-Raman, and Microtensile Bond Strength Study, Polymers (Basel) 12(12) (2020) 2978.10.3390/polym12122978. [24] Z. Jia, X. Feng, Y. Zou, Graphene reinforced epoxy adhesive for fracture resistance, Composites Part B: Eng. 155 (2018) 457–462, https://doi.org/10.1016/j.compositesb.2018.09.093. [25] R.N. Jardim, A.A. Rocha, A.M. Rossi, A. de Almeida Neves, M.B. Portela, R.T. Lopes, T.M. Pires dos Santos, Y. Xing, E. Moreira da Silva, Fabrication and characterization of remineralizing dental composites containing hydroxyapatite nanoparticles, Journal of the Mechanical Behavior of Biomedical Materials 109 (2020) 103817.10.1016/j.jmbbm.2020.103817. [26] V.C.B. Leitune, F.M. Collares, R.M. Trommer, D.G. Andrioli, C.P. Bergmann, S.M. W. Samuel, The addition of nanostructured hydroxyapatite to an experimental adhesive resin, J. dent. 41 (4) (2013) 321–327, https://doi.org/10.1016/j. jdent.2013.01.001. [27] M. Sadat-Shojai, M. Atai, A. Nodehi, L.N. Khanlar, Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application, Dent. Mater. 26 (5) (2010) 471–482, https://doi.org/10.1016/ j.dental.2010.01.005. [28] L. Chen, S. Chai, K. Liu, N. Ning, J. Gao, Q. Liu, F. Chen, Q. Fu, enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface, ACS Appl. Mater. Interfaces 4 (8) (2012) 4398–4404, https://doi.org/10.1021/am3010576. [29] H.W. Liu Mei, Chen Wenjing, Hu Xiaokun, Graphene Oxide-Silica Composite Fillers into the Experimental Dental Adhesives for Potential Therapy, 1(2) (2017) 42-46.10.21127/yaoyimr20170012. [30] L. Ge, Q. Li, M. Wang, J. Ouyang, X. Li, M.M.Q. Xing, Nanosilver particles in medical applications: synthesis, performance, and toxicity, Int. J. Nanomed. 9 (2014) 2399–2407, https://doi.org/10.2147/IJN.S55015. [31] M. Dutra-Correa, A.A.B.V. Leite, S.P.H.M. de Cara, I.M.A. Diniz, M.M. Marques, I. B. Suffredini, M.S. Fernandes, S.H. Toma, K. Araki, I.S. Medeiros, Antibacterial effects and cytotoxicity of an adhesive containing low concentration of silver nanoparticles, J. Dent. 77 (2018) 66–71, https://doi.org/10.1016/j.jdent.2018.07.010. [32] C. Prejmerean, M. Moldovan, L. Silaghi-Dumitrescu, D. Prodan, G. Furtos, M. Trif, V. Popescu, V. Pascalau, C. Petrea, R. Silaghi-Dumitrescu, Composition Versus Physico-mechanical Properties of Some Dental Experimental Polymers, Mater. Plast. 48 (1) (2011). [33] M.H. Santos, M.d. Oliveira, L.P.d.F. Souza, H.S. Mansur, W.L. Vasconcelos, Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process %J, Mater. Res. 7 (4) (2004) 625–630. [34] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society 80(6) (1958) 1339-1339.10.1021/ja01539a017. [35] L. Perinka, H. Sano, H. Hosoda, Dentin thickness, hardness, and Ca-concentration vs bond strength of dentin adhesives, Dent. Mater. 8 (4) (1992) 229–233, https://doi.org/10.1016/0109-5641(92)90090-Y. [36] I. Watanabe, N. Nakabayashi, D.H. Pashley, Bonding to Ground Dentin by a Phenyl-P Self -etching Primer, J. Dent. Res. 73 (6) (1994) 1212–1220, https://doi.org/10.1177/00220345940730061301. [37] H. Schweikl, K.-A. Hiller, C. Bolay, M. Kreissl, W. Kreismann, A. Nusser, S.Steinhauser, J. Wieczorek, R. Vasold, G. Schmalz, Cytotoxic and mutagenic effects of dental composite materials, Biomaterials 26 (14) (2005) 1713–1719, https://doi.org/10.1016/j.biomaterials.2004.05.025. [38] Sigma - Aldrich, Protocol Guide: WST-1 Assay for Cell Proliferation and Viability. https://www.sigmaaldrich.com/technical-documents/protocols/biology/roche/cell-proliferation-reagent-wst-1.html. [39] ISO10993-5:2009, Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity, 2017. [40] S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano. 5 (9) (2011) 6971–6980, https://doi.org/10.1021/nn202451x. [41] O. Akhavan, E. Ghaderi, A. Esfandiar, Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation, j. phys. Chem. B 115 (19) (2011) 6279–6288, https://doi.org/10.1021/jp200686k. [42] K. Ioannidis, S. Niazi, P. Mylonas, F. Mannocci, S. Deb, The synthesis of nano silver-graphene oxide system and its efficacy against endodontic biofilms using a novel tooth model, Dent. Mater. 35 (11) (2019) 1614–1629, https://doi.org/10.1016/j.dental.2019.08.105. [43] A.C. Profeta, Dentine bonding agents comprising calcium-silicates to support proactive dental care: Origins, development and future, Dent. Mater. J. 33 (4) (2014) 443–452, https://doi.org/10.4012/dmj.2013-267. [44] A. Alshahrani, M.S. Bin-Shuwaish, R.S. Al-Hamdan, T. Almohareb, A.M. Maawadh, M. Al Deeb, A.M. Alhenaki, T. Abduljabbar, F. Vohra, Graphene oxide nano-filler based experimental dentine adhesive. A SEM / EDX, Micro-Raman and microtensile bond strength analysis, J Appl Biomater Funct Mater 18 (2020) 2280800020966936.10.1177/2280800020966936. [45] M.S. Bin-Shuwaish, A.M. Maawadh, R.S. Al-Hamdan, S. Alresayes, T. Ali, B.Almutairi, F. Vohra, T. Abduljabbar, Influence of graphene oxide filler content on the dentin bond integrity, degree of conversion and bond strength of experimental adhesive. A SEM, micro-Raman, FTIR and microtensile study, Mater. Res. Express 7 (11) (2020) 115403, https://doi.org/10.1088/2053-1591/abcba7. [46] K.S. Hui, K.N. Hui, D.A. Dinh, C.H. Tsang, Y.R. Cho, W. Zhou, X. Hong, H.-H. Chun, Green synthesis of dimension-controlled silver nanoparticle–graphene oxidewith in situ ultrasonication, Acta. Materialia. 64 (2014) 326–332, https://doi.org/10.1016/j.actamat.2013.10.045. [47] T.F. Watson, A.R. Atmeh, S. Sajini, R.J. Cook, F. Festy, Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease, Dent. Mater. 30 (1) (2014) 50–61, https://doi.org/10.1016/j.dental.2013.08.202. [48] B. Van Meerbeek, K. Yoshihara, Y. Yoshida, A. Mine, D.M. J, V.L. K.L, State of the art of self-etch adhesives, Dental Materials 27(1) (2011) 17-28.10.1016/j.dental.2010.10.023. [49] N. Hiraishi, N. Tochio, T. Kigawa, M. Otsuki, J. Tagami, Monomer-collagen interactions studied by saturation transfer difference NMR, J. Dent. Res. 92 (3) (2013) 284–288, https://doi.org/10.1177/0022034512474310. [50] D.H. Pashley, F.R. Tay, C. Yiu, M. Hashimoto, L. Breschi, R.M. Carvalho, S. Ito, Collagen degradation by host-derived enzymes during aging, J. Dent. Res. 83 (3) (2004) 216–221, https://doi.org/10.1177/154405910408300306. [51] A. Apicella, L. Nicolais, Effect of water on the properties of epoxy matrix and composite, Springer, Berlin Heidelberg, Berlin, Heidelberg, 1985, pp. 69–77. [52] K. Cai, Y. Delaviz, M. Banh, Y. Guo, J.P. Santerre, Biodegradation of composite resin with ester linkages: identifying human salivary enzyme activity with a potential role in the esterolytic process, Dent. Mater. 30 (8) (2014) 848–860, https://doi.org/10.1016/j.dental.2014.05.031. [53] I.M. Barszczewska-Rybarek, A Guide through the Dental Dimethacrylate Polymer Network Structural Characterization and Interpretation of Physico-Mechanical Properties, Materials (Basel) 12(24) (2019).10.3390/ma12244057. [54] M. Freund, E.C. Munksgaard, Enzymatic degradation of BISGMA/TEGDMA-polymers causing decreased microhardness and greater wear in vitro, Scandinavian j. dent. Res. 98 (4) (1990) 351–355, https://doi.org/10.1111/j.1600-0722.1990.tb00984.x. [55] Y. Nishitani, M. Yoshiyama, K. Hosaka, J. Tagami, A. Donnelly, M. Carrilho, F.R.Tay, D.H. Pashley, Use of Hoy’s solubility parameters to predict water sorption/solubility of experimental primers and adhesives 115 (1) (2007) 81–86, https://doi.org/10.1111/j.1600-0722.2007.00430.x. [56] K. Yoshihara, Y. Yoshida, N. Nagaoka, D. Fukegawa, S. Hayakawa, A. Mine, M. Nakamura, S. Minagi, A. Osaka, K. Suzuki, B. Van Meerbeek, Nano-controlled molecular interaction at adhesive interfaces for hard tissue reconstruction, Acta. Biomaterialia. 6 (9) (2010) 3573–3582, https://doi.org/10.1016/j. actbio.2010.03.024. [57] K. Yoshihara, N. Nagaoka, A. Nakamura, T. Hara, Y. Yoshida, B. Van Meerbeek, Nano-layering adds strength to the adhesive interface, J. Dent. Res. 100 (5) (2021) 515–521, https://doi.org/10.1177/0022034520979133. [58] E. Lodovici, A. Reis, S. Geraldeli, J.L. Ferracane, R.Y. Ballester, L.E.R. Filho, Does adhesive thickness affect resin-dentin bond strength after thermal/load cycling?, Operative Dent 34 (1) (2009) 58–64, https://doi.org/10.2341/08-37. [59] U. Lohbauer, S.A. Nikolaenko, A. Petschelt, R. Frankenberger, Resin tags do not contribute to dentin adhesion in self-etching adhesives, J. Adhes. Dent. 10 (2) (2008) 97–103. [60] M. Ferrari, C.L. Davidson, In vivo resin-dentin interdiffusion and tag formation with lateral branches of two adhesive systems, J. Prosthetic Dent. 76 (3) (1996) 250–253, https://doi.org/10.1016/S0022-3913(96)90167-5. [61] G.L. Polyzois, In vitro evaluation of dental materials, Clin. Mater. 16 (1) (1994) 21–60, https://doi.org/10.1016/0267-6605(94)90088-4. [62] I.E. Ruyter, Unpolymerized surface layers on sealants, Acta. Odontologica. Scandinavica. 39 (1) (1981) 27–32, https://doi.org/10.3109/00016358109162255. [63] W. Geurtsen, W. Spahl, K. Muller, G. Leyhausen, Aqueous extracts from dentin adhesives contain cytotoxic chemicals, J. Biomed. Mater. Res. 48 (6) (1999) 772–777. [64] H.-H. Chang, M.-K. Guo, F.H. Kasten, M.-C. Chang, G.-F. Huang, Y.-L. Wang, R.-S. Wang, J.-H. Jeng, Stimulation of glutathione depletion, ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA, Biomaterials 26 (7) (2005) 745–753, https://doi.org/10.1016/j. biomaterials.2004.03.021. [65] G. Spagnuolo, C. Mauro, A. Leonardi, M. Santillo, R. Paternò, H. Schweikl, E.V. Avvedimento, S. Rengo, NF-jB Protection against Apoptosis Induced by HEMA, J. Dental Res. 83 (11) (2004) 837–842, https://doi.org/10.1177/154405910408301103. [66] M. Kusdemir, S. Gunal, F. Ozer, S. Imazato, N. Izutani, S. Ebisu, M.B. Blatz, Evaluation of cytotoxic effects of six self-etching adhesives with direct and indirect contact tests, Dent Mater. J. 30 (6) (2011) 799–805, https://doi.org/ 10.4012/dmj.2011-046. [67] M. Tahriri, M. Del Monico, A. Moghanian, M. Tavakkoli Yaraki, R. Torres, A. Yadegari, L. Tayebi, Graphene and its derivatives: Opportunities and challenges in dentistry, Materials Science and Engineering: C 102 (2019) 171-185.10.1016/j.msec.2019.04.051. [68] C. Liao, Y. Li, S.C. Tjong, Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity, Int J Mol Sci 19(11) (2018) 3564.10.3390/ijms19113564. [69] K.-H. Liao, Y.-S. Lin, C.W. Macosko, C.L. Haynes, Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts, ACS Appl. Mater. Interfaces 3 (7) (2011) 2607–2615, https://doi.org/10.1021/am200428v. [70] W. Shao, X. Liu, H. Min, G. Dong, Q. Feng, S. Zuo, Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite, ACS Appl. Mater. Interfaces 7 (12) (2015) 6966–6973, https://doi.org/10.1021/acsami.5b00937. [71] A. Dreanca, C. Sarosi, A.E. Parvu, M. Blidaru, G. Enacrachi, R. Purdoiu, A. Nagy, B.Sevastre, N.A. Oros, I. Marcus, M. Moldovan, Systemic and local biocompatibility assessment of graphene composite dental materials in experimental mandibular bone defect, Materials 13 (11) (2020) 2511. |