Abstract
In this work, we propose a property-driven testing mechanism to perform unit testing of functions performing numerical computations. Our approach, similar to the property-based testing technique, allows the tester to specify the requirements to check. Unlike property-based testing, the specification is then used to generate test cases in a targeted manner. Moreover, our approach works as a black-box testing tool, i.e. it does not require knowledge about the internals of the function under test. Therefore, besides on programmed numeric functions, we also apply our technique to machine-learned regression models. The experimental evaluation on a number of case studies shows the effectiveness of our testing approach.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme |
URN: | urn:nbn:de:bvb:19-epub-94660-9 |
Ort: | Bonn |
Dokumenten ID: | 94660 |
Datum der Veröffentlichung auf Open Access LMU: | 16. Feb. 2023 14:25 |
Letzte Änderungen: | 16. Feb. 2023 14:26 |