ORCID: https://orcid.org/0000-0001-9650-9263; Hüllermeier, Eyke
ORCID: https://orcid.org/0000-0002-9944-4108; Dembczyński, Krzysztof und Waegeman, Willem
ORCID: https://orcid.org/0000-0002-5950-3003
(August 2022):
Set-valued prediction in hierarchical classification with constrained representation complexity.
38th Conference on Uncertainty in Artificial Intelligence, Eindhoven, Netherlands, 1-5 August 2022.
Cussens, James und Zhang, Kun (Hrsg.):
In: Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence,
Bd. 180
PMLR. S. 1392-1401
[PDF, 600kB]


Abstract
Set-valued prediction is a well-known concept in multi-class classification. When a classifier is uncertain about the class label for a test instance, it can predict a set of classes instead of a single class. In this paper, we focus on hierarchical multi-class classification problems, where valid sets (typically) correspond to internal nodes of the hierarchy. We argue that this is a very strong restriction, and we propose a relaxation by introducing the notion of representation complexity for a predicted set. In combination with probabilistic classifiers, this leads to a challenging inference problem for which specific combinatorial optimization algorithms are needed. We propose three methods and evaluate them on benchmark datasets: a naïve approach that is based on matrix-vector multiplication, a reformulation as a knapsack problem with conflict graph, and a recursive tree search method. Experimental results demonstrate that the last method is computationally more efficient than the other two approaches, due to a hierarchical factorization of the conditional class distribution.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme |
URN: | urn:nbn:de:bvb:19-epub-94670-4 |
Dokumenten ID: | 94670 |
Datum der Veröffentlichung auf Open Access LMU: | 16. Feb. 2023 14:52 |
Letzte Änderungen: | 26. Nov. 2024 10:42 |