Abstract
In contrast to conventional (single-label) classification, the setting of multilabel classification (MLC) allows an instance to belong to several classes simultaneously. Thus, instead of selecting a single class label, predictions take the form of a subset of all labels. In this paper, we study an extension of the setting of MLC, in which the learner is allowed to partially abstain from a prediction, that is, to deliver predictions on some but not necessarily all class labels. We propose a formalization of MLC with abstention in terms of a generalized loss minimization problem and present first results for the case of the Hamming loss, rank loss, and F-measure, both theoretical and experimental.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme |
ISBN: | 978-1-57735-835-0 |
ISSN: | 2159-5399 |
Ort: | Palo Alto, California USA |
Sprache: | Englisch |
Dokumenten ID: | 94674 |
Datum der Veröffentlichung auf Open Access LMU: | 16. Feb. 2023 15:29 |
Letzte Änderungen: | 18. Dez. 2024 08:53 |