Abstract
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.
Dokumententyp: | Paper |
---|---|
Keywords: | uncertainty; standard errors; reproducibility; hypotheses |
Fakultät: | Betriebswirtschaft > Institut für Financial Innovation and Technology
Volkswirtschaft > Collaborative Research Center Transregio "Rationality and Competition" |
Themengebiete: | 300 Sozialwissenschaften > 330 Wirtschaft |
JEL Classification: | C13, C18, C10 |
URN: | urn:nbn:de:bvb:19-epub-94706-5 |
Bemerkung: | A full list of authors and affiliations is provided at the end of the document. |
Sprache: | Englisch |
Dokumenten ID: | 94706 |
Datum der Veröffentlichung auf Open Access LMU: | 22. Feb. 2023, 11:44 |
Letzte Änderungen: | 20. Okt. 2023, 08:58 |