Müller, Peter ORCID: 0000-0002-3063-9636; Schulte, Ruth
(2023):
Stability of a Szegő-type asymptotics.
In: Journal of Mathematical Physics, Vol. 64, No. 2, 022101
|
Abstract
We consider a multi-dimensional continuum Schrödinger operator H, which is given by a perturbation of the negative Laplacian by a compactly supported bounded potential. We show that for a fairly large class of test functions, the second-order Szegő-type asymptotics for the spatially truncated Fermi projection of H is independent of the potential and, thus, identical to the known asymptotics of the Laplacian.