Logo Logo
Hilfe
Hilfe
Switch Language to English

Bause, Roman; Schindewolf, Andreas; Tao, Renhao; Duda, Marcel; Chen, Xing-Yan; Quemener, Goulven; Karman, Tijs; Christianen, Arthur; Bloch, Immanuel und Luo, Xin-Yu (2021): Collisions of ultracold molecules in bright and dark optical dipole traps. In: Physical Review Research, Bd. 3, Nr. 3, 33013

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Understanding collisions between ultracold molecules is crucial for making stable molecular quantum gases and harnessing their rich internal degrees of freedom for quantum engineering. Transient complexes can strongly influence collisional physics, but in the ultracold regime, key aspects of their behavior have remained unknown. To explain experimentally observed loss of ground-state molecules from optical dipole traps, it was recently proposed that molecular complexes can be lost due to photoexcitation. By trapping molecules in a repulsive box potential using laser light near a narrow molecular transition, we are able to test this hypothesis with light intensities three orders of magnitude lower than what is typical in red-detuned dipole traps. This allows us to investigate light-induced collisional loss in a gas of nonreactive fermionic Na-23 K-40 molecules. Even for the lowest intensities available in our experiment, our results are consistent with universal loss, meaning unit loss probability inside the short-range interaction potential. Our findings disagree by at least two orders of magnitude with latest theoretical predictions, showing that crucial aspects of molecular collisions are not yet understood and provide a benchmark for the development of new theories.

Dokument bearbeiten Dokument bearbeiten