Abstract
Different properties of dark matter haloes, including growth rate, concentration, interaction history, and spin, correlate with environment in unique, scale-dependent ways. While these halo properties are not directly observable, galaxies will inherit their host haloes' correlations with environment. In this paper, we show how these characteristic environmental signatures allow using measurements of galaxy environment to constrain which dark matter halo properties are most tightly connected to observable galaxy properties. We show that different halo properties beyond mass imprint distinct scale-dependent signatures in both the galaxy two-point correlation function and the distribution of distances to galaxies' kth nearest neighbours, with features strong enough to be accessible even with low-resolution (e.g. grism) spectroscopy at higher redshifts. As an application, we compute observed two-point correlation functions for galaxies binned by half-mass radius at z = 0 from the Sloan Digital Sky Survey, showing that classic galaxy size models (i.e. galaxy size being proportional to halo spin) as well as other recent proposals show significant tensions with observational data. We show that the agreement with observed clustering can be improved with a simple empirical model in which galaxy size correlates with halo growth.
Item Type: | Journal article |
---|---|
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
ISSN: | 0035-8711 |
Language: | English |
Item ID: | 96910 |
Date Deposited: | 05. Jun 2023, 15:24 |
Last Modified: | 05. Jun 2023, 15:24 |