Logo Logo
Hilfe
Hilfe
Switch Language to English

Colaianni, Nicholas R.; Parys, Katarzyna; Lee, Ho-Seok; Conway, Jonathan M.; Kim, Nak Hyun; Edelbacher, Natalie; Mucyn, Tatiana S.; Madalinski, Mathias; Law, Theresa F.; Jones, Corbin D.; Belkhadir, Youssef und Dangl, Jeffery L. (2021): A complex immune response to flagellin epitope variation in commensal communities. In: Cell Host & Microbe, Bd. 29, Nr. 4: S. 635-649

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Immune systems restrict microbial pathogens by identifying non-self'' molecules called microbe-associated molecular patterns (MAMPs). It is unclear how immune responses are tuned to or by MAMP diversity present in commensal microbiota. We systematically studied the variability of commensal peptide derivatives of flagellin (flg22), a MAMP detected by plants. We define substantial functional diversity. Most flg22 peptides evade recognition, while others contribute to evasion by manipulating immunity through antagonism and signal modulation. We establish a paradigm of signal integration, wherein the sequential signaling outputs of the flagellin receptor are separable and allow for reprogramming by commensal-derived flg22 epitope variants. Plant-associated communities are enriched for immune evading flg22 epitopes, but upon physiological stress that represses the immune system, immune-activating flg22 epitopes become enriched. The existence of immune-manipulating epitopes suggests that they evolved to either communicate or utilize the immune system for host colonization and thus can influence commensal microbiota community composition.

Dokument bearbeiten Dokument bearbeiten