Abstract
Antibody testing for determining the SARS-CoV-2 serostatus was rapidly introduced in early 2020 and since then has been gaining special emphasis regarding correlates of protection. With limited access to representative samples with known SARS-CoV-2 infection status during the initial period of test development and validation, spectrum bias has to be considered when moving from a test establishment setting to population-based settings, in which antibody testing is currently implemented. To provide insights into the presence and magnitude of spectrum bias and to estimate performance measures of antibody testing in a population-based environment, we compared SARS-CoV-2 neutralization to a battery of serological tests and latent class analyses (LCA) in a subgroup (n = 856) of the larger population based TiKoCo-19 cohort (n = 4185). Regarding spectrum bias, we could proof notable differences in test sensitivities and specificities when moving to a population-based setting, with larger effects visible in earlier registered tests. While in the population-based setting the two Roche ELECSYS anti-SARS-CoV-2 tests outperformed every other test and even LCA regarding sensitivity and specificity in dichotomous testing, they didn't provide satisfying quantitative correlation with neutralization capacity. In contrast, our in-house anti SARS-CoV-2-Spike receptor binding domain (RBD) IgG-ELISA (enzyme-linked-immunosorbant assay) though inferior in dichotomous testing, provided satisfactory quantitative correlation and may thus represent a better correlate of protection. In summary, all tests, led by the two Roche tests, provided sufficient accuracy for dichotomous identification of neutralizing sera, with increasing spectrum bias visible in earlier registered tests, while the majority of tests, except the RBD-ELISA, didn't provide satisfactory quantitative correlations.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Sprache: | Englisch |
Dokumenten ID: | 97898 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023, 15:27 |
Letzte Änderungen: | 05. Jun. 2023, 15:27 |