Abstract
Background Two-dimensional (2D)-3D registration is challenging in the presence of implant projections on intraoperative images, which can limit the registration capture range. Here, we investigate the use of deep-learning-based inpainting for removing implant projections from the X-rays to improve the registration performance. Methods We trained deep-learning-based inpainting models that can fill in the implant projections on X-rays. Clinical datasets were collected to evaluate the inpainting based on six image similarity measures. The effect of X-ray inpainting on capture range of 2D-3D registration was also evaluated. Results The X-ray inpainting significantly improved the similarity between the inpainted images and the ground truth. When applying inpainting before the 2D-3D registration process, we demonstrated significant recovery of the capture range by up to 85%. Conclusion Applying deep-learning-based inpainting on X-ray images masked by implants can markedly improve the capture range of the associated 2D-3D registration task.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISSN: | 1478-5951 |
Sprache: | Englisch |
Dokumenten ID: | 97968 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023, 15:27 |
Letzte Änderungen: | 17. Okt. 2023, 14:57 |