Abstract
We consider the fractional Schrodinger operator with Hardy potential and critical or subcritical coupling constant. This operator generates a natural scale of homogeneous Sobolev spaces, which we compare with the ordinary homogeneous Sobolev spaces. As a byproduct, we obtain generalized and reversed Hardy inequalities for this operator. Our results extend those obtained recently for ordinary (non-fractional) Schrodinger operators and have an important application in the treatment of large relativistic atoms.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Analysis, Mathematische Physik und Numerik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1073-7928 |
Sprache: | Englisch |
Dokumenten ID: | 98170 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023, 15:28 |
Letzte Änderungen: | 13. Aug. 2024, 12:46 |