Abstract
We study risk-sharing equilibria with general convex costs on the agents' trading rates. For an infinite-horizon model with linear state dynamics and exogenous volatilities, we prove that the equilibrium returns mean-revert around their frictionless counterparts-the deviation has Ornstein-Uhlenbeck dynamics for quadratic costs whereas it follows a doubly-reflected Brownian motion if costs are proportional. More general models with arbitrary state dynamics and endogenous volatilities lead to multidimensional systems of nonlinear, fully-coupled forward-backward SDEs. These fall outside the scope of known well-posedness results, but can be solved numerically using the simulation-based deep-learning approach of Han, Jentzen, and E (2018). In a calibration to time series of prices and trading volume, realistic liquidity premia are accompanied by a moderate increase in volatility. The effects of different cost specifications are rather similar, justifying the use of quadratic costs as a proxy for other less tractable specifications.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Finanz- und Versicherungsmathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0960-1627 |
Sprache: | Englisch |
Dokumenten ID: | 98493 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023, 15:29 |
Letzte Änderungen: | 22. Aug. 2024, 10:50 |