Abstract
We study risk-sharing equilibria with general convex costs on the agents' trading rates. For an infinite-horizon model with linear state dynamics and exogenous volatilities, we prove that the equilibrium returns mean-revert around their frictionless counterparts-the deviation has Ornstein-Uhlenbeck dynamics for quadratic costs whereas it follows a doubly-reflected Brownian motion if costs are proportional. More general models with arbitrary state dynamics and endogenous volatilities lead to multidimensional systems of nonlinear, fully-coupled forward-backward SDEs. These fall outside the scope of known well-posedness results, but can be solved numerically using the simulation-based deep-learning approach of Han, Jentzen, and E (2018). In a calibration to time series of prices and trading volume, realistic liquidity premia are accompanied by a moderate increase in volatility. The effects of different cost specifications are rather similar, justifying the use of quadratic costs as a proxy for other less tractable specifications.
Item Type: | Journal article |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Mathematics > Workgroup Financial Mathematics |
Subjects: | 500 Science > 510 Mathematics |
ISSN: | 0960-1627 |
Language: | English |
Item ID: | 98493 |
Date Deposited: | 05. Jun 2023, 15:29 |
Last Modified: | 22. Aug 2024, 10:50 |