Logo Logo
Hilfe
Hilfe
Switch Language to English

Goodrich, Julia K.; Singer-Berk, Moriel; Son, Rachel; Sveden, Abigail; Wood, Jordan; England, Eleina; Cole, Joanne B.; Weisburd, Ben; Watts, Nick; Caulkins, Lizz; Dornbos, Peter; Koesterer, Ryan; Zappala, Zachary; Zhang, Haichen; Maloney, Kristin A.; Dahl, Andy; Aguilar-Salinas, Carlos A.; Atzmon, Gil; Barajas-Olmos, Francisco; Barzilai, Nir; Blangero, John; Boerwinkle, Eric; Bonnycastle, Lori L.; Bottinger, Erwin; Bowden, Donald W.; Centeno-Cruz, Federico; Chambers, John C.; Chami, Nathalie; Chan, Edmund; Chan, Juliana; Cheng, Ching-Yu; Cho, Yoon Shin; Contreras-Cubas, Cecilia; Cordova, Emilio; Correa, Adolfo; DeFronzo, Ralph A.; Duggirala, Ravindranath; Dupuis, Josee; Eugenia Garay-Sevilla, Ma; Garcia-Ortiz, Humberto; Gieger, Christian; Glaser, Benjamin; Gonzalez-Villalpando, Clicerio; Elena Gonzalez, Ma; Grarup, Niels; Groop, Leif; Gross, Myron; Haiman, Christopher; Han, Sohee; Hanis, Craig L.; Hansen, Torben; Heard-Costa, Nancy L.; Henderson, Brian E.; Hernandez, Juan Manuel Malacara; Hwang, Mi Yeong; Islas-Andrade, Sergio; Jorgensen, Marit E.; Kang, Hyun Min; Kim, Bong-Jo; Kim, Young Jin; Koistinen, Heikki A.; Kooner, Jaspal Singh; Kuusisto, Johanna; Kwak, Soo-Heon; Laakso, Markku; Lange, Leslie; Lee, Jong-Young; Lee, Juyoung; Lehman, Donna M.; Linneberg, Allan; Liu, Jianjun; Loos, Ruth J. F.; Lyssenko, Valeriya; Ma, Ronald C. W.; Martinez-Hernandez, Angelica; Meigs, James B.; Meitinger, Thomas; Mendoza-Caamal, Elvia; Mohlke, Karen L.; Morris, Andrew D.; Morrison, Alanna C.; Ng, Maggie C. Y.; Nilsson, Peter M.; O'Donnell, Christopher J.; Orozco, Lorena; Palmer, Colin N. A.; Park, Kyong Soo; Post, Wendy S.; Pedersen, Oluf; Preuss, Michael; Psaty, Bruce M.; Reiner, Alexander P.; Revilla-Monsalve, Cristina; Rich, Stephen S.; Rotter, Jerome I.; Saleheen, Danish; Schurmann, Claudia; Sim, Xueling; Sladek, Rob; Small, Kerrin S.; So, Wing Yee; Spector, Timothy D.; Strauch, Konstantin; Strom, Tim M.; Tai, E. Shyong; Tam, Claudia H. T.; Teo, Yik Ying; Thameem, Farook; Tomlinson, Brian; Tracy, Russell P.; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Tusie-Luna, Teresa; Dam, Rob M. van; Vasan, Ramachandran S.; Wilson, James G.; Witte, Daniel R.; Wong, Tien-Yin; Burtt, Noel P.; Zaitlen, Noah; McCarthy, Mark I.; Boehnke, Michael; Pollin, Toni I.; Flannick, Jason; Mercader, Josep M.; O'Donnell-Luria, Anne; Baxter, Samantha; Florez, Jose C.; MacArthur, Daniel G. und Udler, Miriam S. (2021): Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. In: Nature Communications, Bd. 12, Nr. 1, 3505

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias. Penetrance of variants in monogenic disease and clinical utility of common polygenic variation has not been well explored on a large-scale. Here, the authors use exome sequencing data from 77,184 individuals to generate penetrance estimates and assess the utility of polygenic variation in risk prediction of monogenic variants.

Dokument bearbeiten Dokument bearbeiten