Logo Logo
Switch Language to German

Haug, Carolin and Haug, Joachim T. (2021): A new fossil mantis shrimp and the convergent evolution of a lobster-like morphotype. In: Peerj, Vol. 9, e11124

Full text not available from 'Open Access LMU'.


Eumalacostracan crustaceans all have a more or less stereotypic body organisation in the sense of tagmosis. Originally, this included a head with six segments (ocular segment plus five appendage-bearing segments), a thorax region with eight segments, and a pleon with six segments. Interestingly, despite these restrictions in variability in terms of tagmosis, the morphological diversity within Eumalacostraca is rather high. A group providing representative examples that are commonly known is Decapoda. Decapodan crustaceans include shrimp-like forms, lobster-like forms and crab-like forms. The stem species of Eucarida, the group including Decapoda and Euphausiacea, presumably possessed a rather shrimp-like morphology, quite similar to the stem species of Eumalacostraca. Also two other lineages within Eumalacostraca, namely Hoplocarida (with the mantis shrimps as modern representatives) and Neocarida (with the sister groups Thermosbaenacea and Peracarida) evolved from the shrimp-like body organisation to include a lobster-like one. In this study, we demonstrate that the stepwise evolution towards a lobster morphotype occurred to a certain extent in similar order in these three lineages, Hoplocarida, Eucarida and Peracarida, leading to similar types of derived body organisation. This evolutionary reconstruction is based not only on observations of modern fauna, but especially on exceptionally preserved Mesozoic fossils, including the description of a new species of mantis shrimps bridging the morphological gap between the more ancestral-appearing Carboniferous forms and the more modern-appearing Jurassic forms. With this, Mesozoic eumalacostracans represent an important (if not unique) 'experimental set-up' for research on factors leading to convergent evolution, the understanding of which is still one of the puzzling challenges of modern evolutionary theory.

Actions (login required)

View Item View Item