Abstract
We investigate the relations between the Grothendieck group of coherent modules of an algebraic variety and its Chow group of algebraic cycles modulo rational equivalence. Those are in essence torsion phenomena, which we attempt to control by considering the action of the Adams operations on the Brown-Gersten-Quillen spectral sequence and related objects, such as connective K-0-theory. We provide elementary arguments whenever possible. As applications, we compute the connective K-0-theory of the following objects: (1) the variety of reduced norm one elements in a central division algebra of prime degree;(2) the classifying space of the split special orthogonal group of odd degree.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 2308-2151 |
Sprache: | Englisch |
Dokumenten ID: | 98817 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023, 15:29 |
Letzte Änderungen: | 13. Aug. 2024, 12:46 |