Abstract
One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau. However, disorder and interaction effects make identifying spin gap signatures challenging. Here we study experimentally and numerically the 1D channel in a series of low disorder p-type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong. We demonstrate an alternative signature for probing spin gaps, which is insensitive to disorder, based on the linear and non-linear response to the orientation of the applied magnetic field, and extract a spin-orbit gap Delta E approximate to 500 mu eV. This approach could enable one-dimensional hole systems to be developed as a scalable and reproducible platform for topological quantum applications. In one-dimensional systems, the combination of a strong spin-orbit interaction and an applied magnetic field can give rise to a spin-gap, however experimental identification is difficult. Here, the authors present new signatures for the spin-gap, and verify these experimentally in hole QPCs.
Item Type: | Journal article |
---|---|
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
ISSN: | 2041-1723 |
Language: | English |
Item ID: | 99119 |
Date Deposited: | 05. Jun 2023, 15:30 |
Last Modified: | 05. Jun 2023, 15:30 |