Logo Logo
Switch Language to German

Izgi, Gizem; Eibl, Eva P. S.; Donner, Stefanie and Bernauer, Felix (2021): Performance Test of the Rotational Sensor blueSeis-3A in a Huddle Test in Furstenfeldbruck. In: Sensors, Vol. 21, No. 9, 3170

Full text not available from 'Open Access LMU'.


Rotational motions play a key role in measuring seismic wavefield properties. Using newly developed portable rotational instruments, it is now possible to directly measure rotational motions in a broad frequency range. Here, we investigated the instrumental self-noise and data quality in a huddle test in Furstenfeldbruck, Germany, in August 2019. We compare the data from six rotational and three translational sensors. We studied the recorded signals using correlation, coherence analysis, and probabilistic power spectral densities. We sorted the coherent noise into five groups with respect to the similarities in frequency content and shape of the signals. These coherent noises were most likely caused by electrical devices, the dehumidifier system in the building, humans, and natural sources such as wind. We calculated self-noise levels through probabilistic power spectral densities and by applying the Sleeman method, a three-sensor method. Our results from both methods indicate that self-noise levels are stable between 0.5 and 40 Hz. Furthermore, we recorded the 29 August 2019 ML 3.4 Dettingen earthquake. The calculated source directions are found to be realistic for all sensors in comparison to the real back azimuth. We conclude that the five tested blueSeis-3A rotational sensors, when compared with respect to coherent noise, self-noise, and source direction, provide reliable and consistent results. Hence, field experiments with single rotational sensors can be undertaken.

Actions (login required)

View Item View Item