Abstract
In the context of control and estimation under information constraints, restoration entropy measures the minimal required data rate above which the state of a system can be estimated so that the estimation quality does not degrade over time and, conversely, can be improved. The remote observer here is assumed to receive its data through a communication channel of finite bit-rate capacity. In this paper, we provide a new characterization of the restoration entropy which does not require to compute any temporal limit, i.e., an asymptotic quantity. Our new formula is based on the idea of finding a specific Riemannian metric on the state space which makes the metric-dependent upper estimate of the restoration entropy as tight as one wishes. (C) 2021 The Authors. Published by Elsevier Ltd.
Item Type: | Journal article |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Computer Science |
Subjects: | 000 Computer science, information and general works > 004 Data processing computer science |
ISSN: | 0005-1098 |
Language: | English |
Item ID: | 99456 |
Date Deposited: | 05. Jun 2023, 15:31 |
Last Modified: | 05. Jun 2023, 15:31 |