Logo Logo
Exportieren als [RSS feed] RSS 1.0 [RSS2 feed] RSS 2.0
Gruppiert nach: Dokumententyp | Veröffentlichungsdatum
Springe zu: 2024 | 2023 | 2022 | 2021 | 2018 | 2016 | 2014
Anzahl der Publikationen: 22

2024

Herrmann, Moritz ORCID logoORCID: https://orcid.org/0000-0002-4893-5812; Lange, F. Julian D.; Eggensperger, Katharina; Casalicchio, Giuseppe; Wever, Marcel ORCID logoORCID: https://orcid.org/0000-0001-9782-6818; Feurer, Matthias; Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202; Hüllermeier, Eyke ORCID logoORCID: https://orcid.org/0000-0002-9944-4108; Boulesteix, Anne-Laure und Bischl, Bernd (Juli 2024): Position: Why We Must Rethink Empirical Research in Machine Learning. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, 21. - 27. July 2024. In: Proceedings of the 41st International Conference on Machine Learning, Proceedings of Machine Learning Research Bd. 235 PMLR. S. 18228-18247 [PDF, 334kB]

Schalk, Daniel; Bischl, Bernd ORCID logoORCID: https://orcid.org/0000-0001-6002-6980 und Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202 (2024): Privacy-preserving and lossless distributed estimation of high-dimensional generalized additive mixed models. In: Statistics and Computing, Bd. 34, Nr. 1, 31 [PDF, 835kB]

2023

Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202; Pfisterer, Florian; Bischl, Bernd ORCID logoORCID: https://orcid.org/0000-0001-6002-6980 und Grün, Bettina (2023): Mixture of experts distributional regression: implementation using robust estimation with adaptive first-order methods. In: AStA Advances in Statistical Analysis [Forthcoming]

Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202; Baumann, Philipp F. M.; Kneib, Thomas und Hothorn, Torsten (2023): Probabilistic time series forecasts with autoregressive transformation models. In: Statistics and Computing, Bd. 33, Nr. 2 [PDF, 653kB]

2022

Fritz, Cornelius; Dorigatti, Emilio und Rügamer, David (10. März 2022): Combining graph neural networks and spatio-temporal disease models to improve the prediction of weekly COVID-19 cases in Germany. In: Scientific Reports, Bd. 12 [PDF, 11MB]

Mittermeier, Magdalena ORCID logoORCID: https://orcid.org/0000-0002-8668-281X; Weigert, Maximilian ORCID logoORCID: https://orcid.org/0000-0003-4400-134X; Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202; Küchenhoff, Helmut ORCID logoORCID: https://orcid.org/0000-0002-6372-2487 und Ludwig, Ralf ORCID logoORCID: https://orcid.org/0000-0002-4225-4098 (2022): A deep learning based classification of atmospheric circulation types over Europe: projection of future changes in a CMIP6 large ensemble. In: Environmental Research Letters, Bd. 17, Nr. 8, 084021 [PDF, 9MB]

Ott, Felix; Rügamer, David; Heublein, Lucas; Hamann, Tim; Barth, Jens; Bischl, Bernd und Mutschler, Christopher (2022): Benchmarking online sequence-to-sequence and character-based handwriting recognition from IMU-enhanced pens. In: International Journal on Document Analysis and Recognition, Bd. 25, Nr. 4: S. 385-414

Rath, Katharina ORCID logoORCID: https://orcid.org/0000-0002-4962-5656; Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202; Bischl, Bernd ORCID logoORCID: https://orcid.org/0000-0001-6002-6980; Toussaint, Udo von; Rea, Cristina ORCID logoORCID: https://orcid.org/0000-0002-9948-2649; Maris, Andrew; Granetz, Robert und Albert, Christopher G. ORCID logoORCID: https://orcid.org/0000-0003-4773-416X (2022): Data augmentation for disruption prediction via robust surrogate models. In: Journal of Plasma Physics, Bd. 88, Nr. 5: S. 1-23 [PDF, 1MB]

Liew, Bernard X. W.; Kovacs, Francisco M.; Rügamer, David und Royuela, Ana (2022): Machine learning versus logistic regression for prognostic modelling in individuals with non-specific neck pain. In: European Spine Journal, Bd. 31, Nr. 8: S. 2082-2091

Rezaei, Mina; Dorigatti, Emilio; Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202 und Bischl, Bernd ORCID logoORCID: https://orcid.org/0000-0001-6002-6980 (2022): Joint Debiased Representation Learning and Imbalanced Data Clustering. 2022 IEEE International Conference on Data Mining Workshops (ICDMW), Orlando, Florida, 28 November–1 December 2022. In: 2022 IEEE International Conference on Data Mining Workshops (ICDMW), Los Alamitos: IEEE. S. 55-62

Ott, Felix; Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202; Heublein, Lucas; Bischl, Bernd ORCID logoORCID: https://orcid.org/0000-0001-6002-6980 und Mutschler, Christopher (2022): Joint Classification and Trajectory Regression of Online Handwriting using a Multi-Task Learning Approach. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, Hawaii, 4-8 January 2022. In: 2022 IEEE Winter Conference on Applications of Computer Vision : 4-8 January 2022, Waikoloa, Hawaii : proceedings, Piscataway, NJ: IEEE. S. 1244-1254

Weber, Tobias ORCID logoORCID: https://orcid.org/0000-0002-5430-2595; Ingrisch, Michael ORCID logoORCID: https://orcid.org/0000-0003-0268-9078; Bischl, Bernd ORCID logoORCID: https://orcid.org/0000-0001-6002-6980 und Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202 (2022): Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs. MICCAI Workshop on Medical Applications with Disentanglements, Singapore, 18. - 22. September 2022. Fragemann, Jana; Li, Jianning; Liu, Xiao und Tsaftar, Sotirios A. (Hrsg.): In: Medical Applications with Disentanglements, Cham: Springer. S. 22-32 [PDF, 9MB]

Kopper, Philipp; Wiegrebe, Simon; Bischl, Bernd; Bender, Andreas ORCID logoORCID: https://orcid.org/0000-0001-5628-8611 und Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202 (2022): DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex Hazard Structures in Survival Analysis. 26th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD 2022), Chengdu, China, May 16–19, 2022. Gama, João (Hrsg.): In: Advances in Knowledge Discovery and Data Mining. 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16–19, 2022, Proceedings, Part II, Lecture Notes in Computer Science Bd. 13281 Cham: Springer. S. 249-261

2021

Bender, Andreas ORCID logoORCID: https://orcid.org/0000-0001-5628-8611; Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202; Scheipl, Fabian ORCID logoORCID: https://orcid.org/0000-0001-8172-3603 und Bischl, Bernd ORCID logoORCID: https://orcid.org/0000-0001-6002-6980 (2021): A General Machine Learning Framework for Survival Analysis. In: Hutter, Frank; Kersting, Kristian; Lijffijt, Jefrey und Valera, Isabel (Hrsg.): Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part III. Lecture Notes in Computer Science (LNCS), Bd. 12459. Cham: Springer. S. 158-173

Säfken, Benjamin; Rügamer, David; Kneib, Thomas und Greven, Sonja (2021): Conditional Model Selection in Mixed-Effects Models with cAIC4. In: Journal of Statistical Software, Bd. 99, Nr. 8: S. 1-30

Berninger, Christoph; Stöcker, Almond und Rügamer, David (2021): A Bayesian time-varying autoregressive model for improved short-term and long-term prediction. In: Journal of Forecasting, Bd. 41, Nr. 1: S. 181-200

Baumann, Philipp F. M. ORCID logoORCID: https://orcid.org/0000-0001-8066-1615; Hothorn, Torsten ORCID logoORCID: https://orcid.org/0000-0001-8301-0471 und Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202 (2021): Deep Conditional Transformation Models. In: Oliver, Nuria; Pérez-Cruz, Fernando; Kramer, Stefan; Read, Jesse und Lozano, José A. (Hrsg.): Machine Learning and Knowledge Discovery in Databases. Research Track. European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part III. Lecture Notes in Computer Science (LNAI), Bd. 12977. Cham: Springer. S. 3-18

Goschenhofer, Jann; Hvingelby, Rasmus; Rügamer, David ORCID logoORCID: https://orcid.org/0000-0002-8772-9202; Thomas, Janek; Wagner, Moritz und Bischl, Bernd (2021): Deep Semi-supervised Learning for Time Series Classification. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13-16 December 2021. In: 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), New York: IEEE. S. 422-428

2018

Rügamer, David; Brockhaus, Sarah; Gentsch, Kornelia; Scherer, Klaus und Greven, Sonja (2018): Boosting factor-specific functional historical models for the detection of synchronization in bioelectrical signals. In: Journal of the Royal Statistical Society Series C-Applied Statistics, Bd. 67, Nr. 3: S. 621-642

2016

Klüser, Lena; Holler, Peter; Simak, Julia; Tater, Guy; Smets, Pascale; Rügamer, David; Küchenhoff, Helmut ORCID logoORCID: https://orcid.org/0000-0002-6372-2487 und Wess, Gerhard (2016): Predictors of Sudden Cardiac Death in Doberman Pinschers with Dilated Cardiomyopathy. In: Journal of Veterinary Internal Medicine, Bd. 30, Nr. 3: S. 722-732

2014

Gillhuber, Julia; Rügamer, David; Pfister, Kurt und Scheuerle, Miriam C. (2014): Giardiosis and other enteropathogenic infections: a study on diarrhoeic calves in Southern Germany. In: BMC Research Notes 7:112 [PDF, 1MB]

Gillhuber, Julia; Rügamer, David; Pfister, Kurt und Scheuerle, Miriam C. (2014): Giardiosis and other enteropathogenic infections: a study on diarrhoeic calves in Southern Germany. In: BMC Research Notes, Bd. 7: S. 112-121

Diese Liste wurde am Sat Dec 21 21:48:12 2024 CET erstellt.