Logo
DeutschClear Cookie - decide language by browser settings
Di Serio, C. and Vicard, P. (2002): Graphical chain models for the analysis of complex genetic diseases: an application to hypertension. Collaborative Research Center 386, Discussion Paper 288
[img]
Preview

PDF

338kB

Abstract

A crucial task in modern genetic medicine is the understanding of complex genetic diseases. The main complicating features are that a combination of genetic and environmental risk factors is involved, and the phenotype of interest may be complex. Traditional statistical techniques based on lod-scores fail when the disease is no longer monogenic and the underlying disease transmission model is not defined. Different kinds of association tests have been proved to be an appropriate and powerful statistical tool to detect a candidate gene for a complex disorder. However, statistical techniques able to investigate direct and indirect influences among phenotypes, genotypes and environmental risk factors, are required to analyse the association structure of complex diseases. In this paper we propose graphical models as a natural tool to analyse the multifactorial structure of complex genetic diseases. An application of this model to primary hypertension data set is illustrated.