Logo Logo
Hilfe
Hilfe
Switch Language to English

Power, Robert C.; Wittig, Roman M.; Stone, Jeffery R.; Kupczik, Kornelius und Schulz-Kornas, Ellen (2021): The representativeness of the dental calculus dietary record: insights from Tai chimpanzee faecal phytoliths. In: Archaeological and Anthropological Sciences, Bd. 13, Nr. 6, 104

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

In recent years, new applications of microremain dietary analysis using dental calculus as a source of dietary data on ancient human subsistence and behaviours have accelerated. The dental calculus of contemporary human and non-human populations with known diets have been used as reference datasets, including the chimpanzees of Tai National Park (Cote d'Ivoire), but explaining the preservation mechanism involved is challenged by our incomplete knowledge of the microremain content within the diets of these reference populations and our rudimentary information on microremain incorporation into dental calculus. Here, we analyse phytoliths in faecal samples to assess to what extent plant phytoliths of a diet are reflected in the dental calculus as well as in the egested faeces. In this study, we identify and document the faecal phytolith assemblages as an indicator of plant consumption in two Western chimpanzees of the Tai National Park (Cote d'Ivoire) before (wet season), during (dry season) and after (dry season) a dust-rich period. Moreover, observational dietary records of these two individuals were compiled to improve the interpretability of this dental calculus phytolith dataset. The faecal phytolith assemblages vary significantly across samples in terms of abundance and diversity. The most common phytolith morphotypes were eudicot plates, single-cell and multi-cell tracheids, monocot rugulose and echinate spheroids and, to a lesser extent, unspecified thick and thin elongates. High loads of grit and other micro-remains (e.g. diatoms) are found during the dry period. Using observational dietary records as a starting point and our faecal results as a terminus, we consider how dental calculus can accumulate phytoliths. Our findings enable identification of the phytolith morphotypes that are under-represented in dental calculus, which is highly informative for future dental calculus research strategies.

Dokument bearbeiten Dokument bearbeiten