Abstract
We put forward an extension to already existing Lagrangian constraint algorithms, which is readily applicable to (almost all) first–order classical field theories. Our algorithm is optimized to obtain the explicit constraints and thus count the number of propagating degrees of freedom in said theories. This is the main result of the thesis. We employ both the renowned Dirac–Bergmann procedure and our own formalism to obtain the constraint structure of the H(P)–formulation of non–linear electrodynamics and two–dimensional Palatini gravity. Both approaches yield the same results. We observe that our proposed method is an algebraically simpler and conceptually clearer way to calculate the number of physical modes. The relevance and usefulness of our novel Lagrangian iterative procedure are twofold. On the one hand, it simplifies the determination of the constraint structure of these theories. This is particularly pertinent for effective theories of multiple interacting fields of different spins, whose analysis is in general cumbersome and which are prone to the presence of additional unphysical modes — ghosts. On the other hand, it constitutes an essential first step towards establishing a Lagrangian building principle for genuinely ghost–free theories. Indeed, given a first–order Lagrangian, our method yields its associated constraint structure. It is then possible to reverse the logic and find out the conditions a Lagrangian must satisfy in order to possess a certain constraint structure. This natural follow–up is work in progress.
Abstract
Wir schlagen eine Erweiterung zu bereits existierenden Lagrange Zwangsbedingungsalgorithmen vor, welche ohne weiteres auf (fast alle) klassischen Feldtheorien erster Ordnung anwendbar ist. Unser Algorithmus ist optimiert, um die explizite Form der Zwangsbedingungen zu erhalten und ermöglicht damit das Zählen der propagierenden Freiheitsgrade in diesen Theorien. Das ist das Hauptergebnis dieser Arbeit. Wir wenden sowohl das renommierte Dirac–Bergmann Verfahren, als auch unseren eigenen Formalismus an, um die Zwangsbedingungsstruktur der nicht–linearen Elektrodynamik in ihrer H(P)–Formulierung und der zweidimensionalen Palatini Gravitation zu bestimmen. Beide Ans¨atze liefern das gleiche Ergebnis. Wir beobachten, dass unsere Methode der algebraisch einfachere und konzeptuell klarere Weg ist, um die Anzahl der physikalischen Moden zu berechnen. Relevanz und Nutzen unseres neuen iterativen Lagrange Verfahrens ist zweifältig. Einerseits vereinfacht es die Bestimmung der Zwangsbedingungsstruktur besagter Theorien. Das ist besonders relevant für effektive Feldtheorien mehrerer wechselwirkender Felder mit verschiedenen Spins. Deren Analyse ist im Allgemeinen umständlich und sie sind anfällig für das Auftauchen zusätzlicher, unphysikalischer Moden — Geister. Andererseits stellt es den ersten essenziellen Schritt in Richtung eines Konstruktionsprinzips für wirklich geistfreie Theorien dar. Unter Voraussetzung einer Lagrangedichte erster Ordnung kann mit unserer Methode die zugehörige Struktur der Zwangsbedingungen bestimmt werden. Es ist dann möglich die Logik umzukehren und Bedingungen zu finden, die eine Lagrangedichte erfüllen muss, um eine bestimmte Zwangsbedingungsstruktur aufzuweisen. Dies ist Teil einer Follow–up–Arbeit in Vorbereitung.
Dokumententyp: | LMU München: Studienabschlussarbeit |
---|---|
Keywords: | constraint analysis; Horndeski; gravity; Lagrangian; first-order classical field theory; degree of freedom; Dirac-Bergmann |
Fakultät: | Physik |
Institut oder Departement: | Universitäts-Sternwarte München |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik
500 Naturwissenschaften und Mathematik > 520 Astronomie 500 Naturwissenschaften und Mathematik > 530 Physik |
URN: | urn:nbn:de:bvb:19-epub-104078-7 |
Sprache: | Englisch |
Dokumenten ID: | 104078 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Jul. 2023, 12:20 |
Letzte Änderungen: | 06. Jan. 2024, 22:38 |
Literaturliste: | S. Weinberg. Rev. Mod. Phys. 61, 1 (1989). G.W. Horndeski. Int. J. Theor. Phys. 10, 6 (1974). A. Nicolis, R. Rattazzi, and E. Trincherini. Phys. Rev. D 79, 064036 (2009). L. Heisenberg. JCAP 05, 015 (2014). H. Motohashi and T. Suyama. Phys. Rev. D 91, 085009 (2015). L. Arturo Ure ̃na–L ́opez. J. Phys.: Conf. Ser. 761, 012076 (2016). A. Burd and A. Coley. Phys. Lett. B 267, 330–336 (1991). R. Kase and S. Tsujikawa. Int. J. Mod. Phys. D 28, 1942005 (2019). C.P. Burgess. arXiv:1309.4133 [hep-th] (2013). G.W. Horndeski. J. Math. Phys. 17, 1980-–1987 (1976). D. Momeni et al. Eur. Phys. J. C 77, No.1, 37 (2017). J.D. Barrow, M. Thorsrud, and K. Yamamoto. J. High Energ. Phys. 2013, 146 (2013). G. Tasinato. Class. Quant. Grav. 31, 225004 (2014). R.W. Tucker and C. Wang. Class. Quant. Grav. 15, 933–954 (1998). Y.N. Obukhov and E.J. Vlachynsky. Ann. Phys. 8, 497–510 (1999). C. Vuille, J. Ipser, and J. Gallagher. Gen. Relativ. Gravit. 34, 689–696 (2002). S. Nakamura et al. Phys. Rev. D 99, 063533 (2019). A. De Felice et al. JCAP 06, 048 (2016). A. Oliveros and M.A. Jaraba. Int. J. Mod. Phys. D 28, 1950064 (2019). V. Errasti Díez et al. Phys. Rev. D 101, 045008 (2020). V. Errasti Díez et al. Phys. Rev. D 101, 045009 (2020). D.W. Cunningham. Set Theory: A First Course. 2016. H.B. Enderton. Elements of Set Theory. 1977. M.H. Mortad. Introductory Topology. 2014. G.E. Bredon. Topology and Geometry. 1993. J.M. Lee. Introduction to Topological Manifolds. 2000. C.J. Isham. Modern Differential Geometry for Physicists. 1999. T. Aubin. A Course in Differential Geometry. 2001. G.F.T. del Castillo. Differentiable Manifolds — A Theoretical Physics Approach. 2012. M. de Le ́on and P.R. Rodrigues. Methods of Differential Geometry in Analytical Mechanics. North–Holland Mathematics Studies Vol. 158, 1989. K. J ̈anich. Lineare Algebra. 2008. S. Roman. Advanced Linear Algebra. 2008. J.M. Lee. Manifolds and Differential Geometry. 2009. G. Rudolph and M. Schmidt. Differential Geometry and Mathematical Physics — Part I. Manifolds, Lie Groups and Hamiltonian Systems. 2013. R. Abraham and J.E. Marsden. Foundations of Mechanics. 1987. P.J. Olver. Application of Lie Groups to Differential Equations. Springer Verlag, New York, 1993. R.W. Sharpe. Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Springer Verlag, New York, 1997. J.F. Cari ̃nena. Fortschritte der Physik 38, Nr. 9, 641–679 (1990). K. Erdmann and M.J. Wildon. Introduction to Lie Algebras. Springer Verlag, London, 2006. J.M. Lee. Introduction to Smooth Manifolds. 2003. P. Libermann and C.–M. Marle. Symplectic Geometry and Analytical Mechanics. 1987. M. Nakahara. Geometry, Topology and Physics. 2003. T. Frankel. The Geometry of Physics. 2012. F. Schuller. Lectures on the geometric anatomy of theoretical physics. 2013. S. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, San Francisco, 2004. J. Jost. Riemannian Geometry and Geometric Analysis. Springer Verlag, 2011. M.J. Gotay and J.A. Isenberg. Gazette des Mathematiciens 54, 59–79 (1992). A.C. da Silva. Lectures on Symplectic Geometry. 2008. M.J. Gotay, J.M. Nester, and G. Hinds. J. Math. Phys. 19, 2388 (1978). J.E. Marsden and T.S. Ratiu. Introduction to Mechanics and Symmetry. 1999. K. Sundermeyer. Symmetries in Fundamental Physics. 2014. V.I. Arnold. Mathematical Methods of Classical Mechanics. 1989. A. Deriglazov. Classical Mechanics — Hamiltonian and Lagrangian Formalism. 2010. K. Yano and S. Ishihara. Tangent and Cotangent Bundles. 1973. M. Crampin. J. Phys. A: Math. Gen. 14, 2567 (1981). M.C. Mu ̃noz Lecanda and N. Rom ́an–Roy. Ann. Inst. Henri Poincar ́e 57, 27–45 (1992). M. Crampin. J. Phys. A: Math. Gen. 16, 3755 (1983). J.F. Cari ̃nena, C. L ́opez, and N. Rom ́an–Roy. J. Math. Phys. 29, 1143 (1988). M.J. Gotay and J.M. Nester. Ann. Inst. Henri Poincar ́e 30, 129–142 (1979). C. Batlle et al. J. Phys. A: Math. Gen. 20, 5113–5123 (1987). J.F. Cari ̃nena, C. L ́opez, and N. Rom ́an–Roy. JGP 4, n.3 (1987). K. Kamimura. Il Nuevo Cimento B 68, N.1 (1982). L.D. Landau and E.M. Lifshitz. Mechanics. 1969. E.C.G. Sudarshan and N. Mukunda. Classical Dynamics: A Modern Perspective. World Scientific Publishing, Singapore, 1974. F. Scheck. Mechanics — From Newtons Law to Deterministic Chaos. 2018. H. Nikolic. arXiv:quant-ph/9812015 (1998). S.V. Kuzmin and D.G.C. McKeon. Ann. Phys. 318, 495—496 (2005). N. Kiriushcheva and S.V. Kuzmin. Eur. Phys. J. C 70, 389–422 (2010). D.G.C. McKeon. Int. J. Mod. Phys. A 25, 3453–3480 (2010). R. N. Ghalati. arXiv:0901.3344 [gr-qc] (2009). M. Henneaux and C. Teitelboim. Quantization of Gauge Systems. Princeton University Press, Princeton, New Jersey, 1992. P.A.M. Dirac. Can. J. Math. 2, 129 (1950). P.G. Bergmann. Phys. Rev. 75, 680 (1949). P.G. Bergmann and J.H.M. Brunings. Rev. Mod. Phys. 21, 480 (1949). J.M. Pons. Stud. Hist. Philos. Mod. Phys. 36, 491–518 (2005). D.C. Salisbury. Journal of Physics: Conference Series 222 (2010). D.C. Salisbury and K. Sundermeyer. The European Physical Journal H 42 (2017). J.L. Anderson and P.G. Bergmann. Phys. Rev. 83, 1018 (1951). M.J. Gotay and J.M. Nester. Ann. Inst. Henri Poincaré 32, 1–13 (1980). N. Mukunda. Ann. Phys. 9, 408–433 (1976). C. Batlle et al. J. Math. Phys. 27, 2953 (1986). M. de Leon et al. Int. J. Geom. Meth. Mod. Phys. 2, 839 (2005). X. Gracìa, R. Martín, and N. Román–Roy. Int. J. Geom. Meth. Mod. Phys. 6, 851–872 (2009). B. Díaz, D. Higuita, and M. Montesinos. J. Math. Phys. 55, 122901 (2014). B. Díaz and M. Montesinos. J. Math. Phys. 59, 052901 (2018). P.A.M. Dirac. Lectures on quantum mechanics. Belfer Graduate School of Science, Yeshiva University, New York, 1964. G. Date. arXiv:1010.2062 [gr-qc] (2010). J.B. Pitts. Annals of Physics 351, pp. 382-406 (2014). P.A.M. Dirac. Proc. R. Soc. Lond. A 246, 326-332 (1958). A. Shirzad. J. Phys. A: Math. Gen. 31, 2747 (1998). H. J. Rothe and K. D. Rothe. Classical and quantum dynamics of constrained Hamiltonian systems. World Scientific Publishing, Singapore, 2010. O. Miskovic and J. Zanelli. arXiv:hep-th/0301256 (2003). O. Miskovic. arXiv:hep-th/0401185 (2004). T. L. Boullion and P. L. Odell. Generalized Inverse Matrices. John Wiley & Sons, New York and Toronto, 1971. S. Samanta. Int. J. Theor. Phys. 48, 1436–1448 (2009). H. J. Rothe R. Banerjee and K. D. Rothe. J. Phys. A 33, 2059 (2000). J.M. Martin-Garcia. xAct: Efficient tensor computer algebra for the Wolfram Language. url: http://www.xact.es/. M. Born. Proc. R. Soc. Lond. A 143, 410 (1934). N. Bretón. J. Phys.: Conf. Ser. 229, 012006 (2010). H. Salazar I., A. García D., and J.F. Plebanski. J. Math. Phys. 28, 2171 (1987). E. Ayón–Beato and A. García. Phys. Rev. Lett. 80, 5056–5059 (1998). E. Ayón–Beato and A. Garcıa. Phys. Lett. B 464, 25 (1999). A. Alvarez et al. J. High Energ. Phys. 2014, 041 (2014). T. Clifton et al. Physics Reports 513, 1–189 (2012). R.K. Sachs and H. Wu. General Relativity for Mathematicians. Springer Verlag, New York, 1977. E. Poisson. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, 2004. R.M. Wald. General Relativity. The University of Chicago Press, Chicago and London, 1984. M.P. Haugan and C. L ̈ammerzahl. Lect. Notes Phys. 562, 195-212 (2001). C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. W. H. Freeman and Company, 1973. N. Dadhich and J.M. Pons. Gen. Rel. Grav. 44, 2337-2352 (2012). R.N. Ghalati and D.G.C. McKeon. arXiv:0712.2861 [gr-qc] (2008). A.N. Bernal et al. Phys. Lett. B 768, 280–287 (2017). A. Iglesias et al. Phys. Rev. D 76, 104001 (2007). S. Deser. Found. Phys. 26, 617 (1996). N. Kiriushcheva and S.V. Kuzmin. Central Eur. J. Phys. 9, 576–615 (2011). D.G.C. McKeon. Class. Quant. Grav. 23, 3037–3042 (2006). J. Gegenberg et al. Phys. Rev. D 37, 3463-–3471 (1988). T. Banks and L. Susskind. Int. J. Theor. Phys. 23, 475–496 (1984). N. Kiriushcheva and S.V. Kuzmin. Mod. Phys. Lett. A 21, 899–906 (2006). P. Collas. Am. J. Phys. 45, 833–837 (1977). A.M. Frolov, N. Kiriushcheva, and S.V. Kuzmin. Gen. Rel. Grav. 42, 1649–1666 (2010). P. Ginsparg and G.W. Moore. “Lectures on 2D gravity and 2D string theory”. 1992. arXiv: arXiv:hep-th/9304011. R.B. Mann. “Lower dimensional black holes: Inside and out”. 1995. arXiv: gr-qc/9501038. N. Kiriushcheva, S.V. Kuzmin, and D.G.C. McKeon. Mod. Phys. Lett. A 20, 1895–1902 (2005). D.G.C. McKeon. Class. Quant. Grav. 23, 3037 (2006). P. Horava. Class. Quant. Grav. 8, 2069 (1991). D.G.C. McKeon. arXiv:1607.04132 [hep-th] (2017). R.N. Ghalati, N. Kiriushcheva, and S.V. Kuzmin. Mod. Phys. Lett. A 22, 17–28 (2007). N. Kiriushcheva, S.V. Kuzmin, and D.G.C. McKeon. Mod. Phys. Lett. A 20, 1961–1972 (2005). N. Kiriushcheva and S.V. Kuzmin. Ann. Phys. 321, 958-–986 (2006). D. Sternheimer. AIP Conf. Proc. 453: 107–145 (1998). R. Arnowitt, S. Deser, and C.W. Misner. Gen. Rel. Grav. 40, 1997 (2008). L. Heisenberg et al. Phys. Rev. D 96, 084049 (2017). N.Khosravi et al. Phys. Rev. D 85, 024049 (2012). S.F. Hassan and R.A. Rosen. J. High Energ. Phys. 2012, 126 (2012). A. Schmidt-May and M. v. Strauss. J. Phys. A 49, 183001 (2016). G. Dvali, G. Gabadadze, and M. Porrati. Phys. Lett. B 485, 208 (2000). C. de Rham. Comptes Rendus Physique 13, 666–681 (2012). C. Deffayet. Phys. Lett. B 502, 199–208 (2001). C. Deffayet, G. Dvali, and G. Gabadadze. Phys. Rev. D 65, 044023 (2002). |