Abstract
In all odd dimensions at least 5 we produce examples of manifolds admitting pairs of Sasaki structures with different basic Hodge numbers. In dimension 5 we prove more precise results, for example, we show that on connected sums of copies of S(2)xS(3) the number of Sasaki structures with different basic Hodge numbers within a fixed homotopy class of almost contact structures is unbounded. All the Sasaki structures we consider are negative in the sense that the basic first Chern class is represented by a negative definite form of type (1,1). We also discuss the relation of these results to contact topology.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| URN: | urn:nbn:de:bvb:19-epub-106853-1 |
| ISSN: | 0024-6093 |
| Sprache: | Englisch |
| Dokumenten ID: | 106853 |
| Datum der Veröffentlichung auf Open Access LMU: | 11. Sep. 2023 13:44 |
| Letzte Änderungen: | 13. Aug. 2024 12:47 |
| DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 491502892 |

