Abstract
Black holes are considered to be exceptional due to their time evolution and information processing. However, it was proposed recently that these properties are generic for objects, the so-called saturons, that attain the maximal entropy permitted by unitarity. In the present paper, we verify this connection within a renormalizable SU(N) invariant theory. We show that the spectrum of the theory contains a tower of bubbles representing bound states of SU(N) Goldstones. Despite the absence of gravity, a saturated bound state exhibits a striking correspondence with a black hole: Its entropy is given by the Bekenstein-Hawking formula;semiclassically, the bubble evaporates at a thermal rate with a temperature equal to its inverse radius;the information retrieval time is equal to Page's time. The correspondence goes through a trans-theoretic entity of the Poincare Goldstone. The black hole-saturon correspondence has important implications for black hole physics, both fundamental and observational.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
URN: | urn:nbn:de:bvb:19-epub-106901-2 |
ISSN: | 2470-0010 |
Sprache: | Englisch |
Dokumenten ID: | 106901 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Sep. 2023, 13:45 |
Letzte Änderungen: | 29. Sep. 2023, 21:02 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 491502892 |