
Abstract
Humor is a magnetic component in everyday human interactions and communications. Computationally modeling humor enables NLP systems to entertain and engage with users. We investigate the effectiveness of prompting, a new transfer learning paradigm for NLP, for humor recognition. We show that prompting performs similarly to finetuning when numerous annotations are available, but gives stellar performance in low-resource humor recognition. The relationship between humor and offense is also inspected by applying influence functions to prompting; we show that models could rely on offense to determine humor during transfer.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
EU Funded Grant Agreement Number: | 740516 |
EU Projects: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 740516: NonSequeToR - Non-sequence models for tokenization replacement |
Research Centers: | Center for Information and Language Processing (CIS) |
Subjects: | 400 Language > 400 Language 400 Language > 410 Linguistics |
URN: | urn:nbn:de:bvb:19-epub-107443-9 |
Language: | English |
Item ID: | 107443 |
Date Deposited: | 20. Oct 2023, 08:17 |
Last Modified: | 20. Oct 2023, 08:17 |