Abstract
For optimal design of anti-amyloid-beta (A beta) and anti-tau clinical trials, we need to better understand the pathophysiological cascade of A beta- and tau-related processes. Therefore, we set out to investigate how A beta and soluble phosphorylated tau (p-tau) relate to the accumulation of tau aggregates assessed with PET and subsequent cognitive decline across the Alzheimer's disease (AD) continuum. Using human cross-sectional and longitudinal neuroimaging and cognitive assessment data, we show that in early stages of AD, increased concentration of soluble CSF p-tau is strongly associated with accumulation of insoluble tau aggregates across the brain, and CSF p-tau levels mediate the effect of A beta on tau aggregation. Further, higher soluble p-tau concentrations are mainly related to faster accumulation of tau aggregates in the regions with strong functional connectivity to individual tau epicenters. In this early stage, higher soluble p-tau concentrations is associated with cognitive decline, which is mediated by faster increase of tau aggregates. In contrast, in AD dementia, when A beta fibrils and soluble p-tau levels have plateaued, cognitive decline is related to the accumulation rate of insoluble tau aggregates. Our data suggest that therapeutic approaches reducing soluble p-tau levels might be most favorable in early AD, before widespread insoluble tau aggregates. The interplay between amyloid and tau pathology in Alzheimer's disease is still not well understood. Here, the authors show that amyloid-related increased in soluble p-tau is related to subsequent accumulation of tau aggregates and cognitive decline in early stage of the disease.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin
Medizin > Munich Cluster for Systems Neurology (SyNergy) |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-112616-9 |
Sprache: | Englisch |
Dokumenten ID: | 112616 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:38 |
Letzte Änderungen: | 07. Jun. 2024, 13:40 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390857198 |