ORCID: https://orcid.org/0000-0001-6251-8049; Lacaprara, S.; Lieret, Kilian; Maiti, R.; Martini, A.; Meier, F.; Metzner, F.; Milesi, M.; Park, S.-H.; Prim, M.; Pulvermacher, C.; Ritter, M.; Sato, Y.; Schwanda, C.; Sutcliffe, W.; Tamponi, U.; Tenchini, F.; Urquijo, P.; Zani, L.; Zlebcik, R. und Zupanc, A.
  
(2022):
		Punzi-loss: a non-differentiable metric approximation for sensitivity optimisation in the search for new particles.
	
	 In: European Physical Journal C : Particles and Fields, Bd. 82, Nr.  2, 121
      
        
          
             [PDF, 1MB]
          
        
      
Abstract
We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function typical of particle physics, a Punzi-loss function, and the neural network that utilises this loss function a Punzi-net. We show that the Punzi-net outperforms standard multivariate analysis techniques and generalises well to mass hypotheses for which it was not trained. This is achieved by training a single classifier that provides a coherent and optimal classification of all signal hypotheses over the whole search space. Our result constitutes a complementary approach to fully differentiable analyses in particle physics. We implemented this work using PyTorch and provide users full access to a public repository containing all the codes and a training example.
| Dokumententyp: | Zeitschriftenartikel | 
|---|---|
| Fakultät: | Physik | 
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik | 
| URN: | urn:nbn:de:bvb:19-epub-113569-7 | 
| ISSN: | 1434-6044 | 
| Sprache: | Englisch | 
| Dokumenten ID: | 113569 | 
| Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024 07:53 | 
| Letzte Änderungen: | 13. Mai 2024 10:54 | 
		
	
