Logo Logo
Hilfe
Hilfe
Switch Language to English

Jia, Jingyue; Wang, Fulong; Bhujabal, Zambarlal; Peters, Ryan; Mudd, Michal; Duque, Thabata; Allers, Lee; Javed, Ruheena; Salemi, Michelle; Behrends, Christian; Phinney, Brett; Johansen, Terje und Deretic, Vojo (2023): Membrane Atg8ylation, stress granule formation, and MTOR regulation during lysosomal damage. In: Autophagy, Bd. 19, Nr. 6, 2148900: S. 1893-1895

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

The functions of mammalian Atg8 proteins (mATG8s) expand beyond canonical autophagy and include processes collectively referred to as Atg8ylation. Global modulation of protein synthesis under stress conditions is governed by MTOR and liquid-liquid phase separated condensates containing ribonucleoprotein particles known as stress granules (SGs). We report that lysosomal damage induces SGs acting as a hitherto unappreciated inhibitor of protein translation via EIF2A/eIF2 alpha phosphorylation while favoring an ATF4-dependent integrated stress response. SGs are induced by lysosome-damaging agents, SARS-CoV-2 open reading frame 3a protein (ORF3a) expression, Mycobacterium tuberculosis infection, and exposure to proteopathic MAPT/tau. Proteomic studies revealed recruitment to damaged lysosomes of the core SG proteins NUFIP2 and G3BP1 along with the GABARAPs of the mATG8 family. The recruitment of these proteins is independent of SG condensates or canonical autophagy. GABARAPs interact directly with NUFIP2 and G3BP1 whereas Atg8ylation is needed for their recruitment to damaged lysosomes. At the lysosome, NUFIP2 contributes to MTOR inactivation together with LGALS8 (galectin 8) via the Ragulator-RRAGA-RRAGB complex. The separable functions of NUFIP2 and G3BP1 in SG formation vis-a-vis their role in MTOR inactivation are governed by GABARAP and Atg8ylation. Thus, cells employ membrane Atg8ylation to control and coordinate SG and MTOR responses to lysosomal damage.

Dokument bearbeiten Dokument bearbeiten