Abstract
This protocol enables ex vivo immunocapture of cell-type-specific mitochondria directly from their tissue context in heterogeneous tissues such as the nervous system, using MitoTag reporter mice. Mitochondria are key bioenergetic organelles involved in many biosynthetic and signaling pathways. However, their differential contribution to specific functions of cells within complex tissues is difficult to dissect with current methods. The present protocol addresses this need by enabling the ex vivo immunocapture of cell-type-specific mitochondria directly from their tissue context through a MitoTag reporter mouse. While other available methods were developed for bulk mitochondria isolation or more abundant cell-type-specific mitochondria, this protocol was optimized for the selective isolation of functional mitochondria from medium-to-low-abundant cell types in a heterogeneous tissue, such as the central nervous system. The protocol has three major parts: First, mitochondria of a cell type of interest are tagged via an outer mitochondrial membrane eGFP by crossing MitoTag mice to a cell-type-specific Cre-driver line or by delivery of viral vectors for Cre expression. Second, homogenates are prepared from relevant tissues by nitrogen cavitation, from which tagged organelles are immunocaptured using magnetic microbeads. Third, immunocaptured mitochondria are used for downstream assays, e.g., to probe respiratory capacity or calcium handling, revealing cell-type-specific mitochondrial diversity in molecular composition and function. The MitoTag approach enables the identification of marker proteins to label cell-type-specific organelle populations in situ, elucidates cell-type-enriched mitochondrial metabolic and signaling pathways, and reveals functional mitochondrial diversity between adjacent cell types in complex tissues, such as the brain. Apart from establishing the mouse colony (6-8 weeks without import), the immunocapture protocol takes 2 h and functional assays require 1-2 h.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Munich Cluster for Systems Neurology (SyNergy) |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
Sprache: | Englisch |
Dokumenten ID: | 117426 |
Datum der Veröffentlichung auf Open Access LMU: | 07. Jun. 2024 15:46 |
Letzte Änderungen: | 23. Nov. 2024 05:56 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390857198 |