Abstract
Brain A beta deposition is a key early event in the pathogenesis of Alzheimer ' s disease (AD), but the long presymptomatic phase and poor correlation between A beta deposition and clinical symptoms remain puzzling. To elucidate the dependency of downstream pathologies on A beta, we analyzed the trajectories of cerebral A beta accumulation, A beta seeding activity, and neurofilament light chain (NfL) in the CSF (a biomarker of neurodegeneration) in A beta-precursor protein transgenic mice. We find that A beta deposition increases linearly until it reaches an apparent plateau at a late age, while A beta seeding activity increases more rapidly and reaches a plateau earlier, coinciding with the onset of a robust increase of CSF NfL. Short-term inhibition of A beta generation in amyloid-laden mice reduced A beta deposition and associated glial changes, but failed to reduce A beta seeding activity, and CSF NfL continued to increase although at a slower pace. When short-term or long-term inhibition of A beta generation was started at pre-amyloid stages, CSF NfL did not increase despite some A beta deposition, microglial activation, and robust brain A beta seeding activity. A dissociation of A beta load and CSF NfL trajectories was also found in familial AD, consistent with the view that A beta aggregation is not kinetically coupled to neurotoxicity. Rather, neurodegeneration starts when A beta seeding activity is saturated and before A beta deposition reaches critical (half-maximal) levels, a phenomenon reminiscent of the two pathogenic phases in prion disease. The poor correlation between brain A beta deposition and clinical symptoms in Alzheimer ' s disease remains puzzling. Here, the authors show a temporal dissociation of A beta deposition and neurodegeneration.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Munich Cluster for Systems Neurology (SyNergy) |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-117475-3 |
Sprache: | Englisch |
Dokumenten ID: | 117475 |
Datum der Veröffentlichung auf Open Access LMU: | 07. Jun. 2024, 15:47 |
Letzte Änderungen: | 11. Jun. 2024, 09:14 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390857198 |