ORCID: https://orcid.org/0009-0004-0713-7779
(2024):
Hilbert–Schmidt Estimates for Fermionic 2-Body Operators.
In: Communications in Mathematical Physics, Bd. 405, 18
[PDF, 230kB]

Abstract
We prove that the 2-body operator γ2Ψ γ 2 Ψ of a fermionic N -particle state Ψ Ψ obeys ∥γ2Ψ∥HS≤5N ‖ γ 2 Ψ ‖ HS ≤ 5 N , which complements the bound of Yang (Rev Mod Phys 34:694, 1962) that ∥γ2Ψ∥op≤N ‖ γ 2 Ψ ‖ op ≤ N . This estimate furthermore resolves a conjecture of Carlen–Lieb–Reuvers (Commun Math Phys 344:655–671, 2016) concerning the entropy of the normalized 2-body operator. We also prove that the Hilbert–Schmidt norm of the truncated 2-body operator γ2Ψ,T γ 2 Ψ , T obeys the inequality ∥γ2Ψ,T∥HS≤5N tr (γ1Ψ(1−γ1Ψ)) ‖ γ 2 Ψ , T ‖ HS ≤ 5 N tr ( γ 1 Ψ ( 1 - γ 1 Ψ ) ) .
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-122607-5 |
ISSN: | 0010-3616 |
Sprache: | Englisch |
Dokumenten ID: | 122607 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Nov. 2024 12:55 |
Letzte Änderungen: | 19. Nov. 2024 12:55 |