ORCID: https://orcid.org/0000-0003-0942-5243; Zhao, Chen; Bell, Steven
ORCID: https://orcid.org/0000-0001-6774-3149; Didriksen, Maria
ORCID: https://orcid.org/0000-0002-4856-496X; Nawaz, Muhammad S.; Schandra, Nathalie; Stefani, Ambra
ORCID: https://orcid.org/0000-0003-4259-8824; Högl, Birgit; Dauvilliers, Yves; Bachmann, Cornelius G.; Kemlink, David; Sonka, Karel; Paulus, Walter; Trenkwalder, Claudia; Oertel, Wolfgang H.; Hornyak, Magdolna; Teder-Laving, Maris; Metspalu, Andres; Hadjigeorgiou, Georgios M.
ORCID: https://orcid.org/0000-0001-5386-4273; Polo, Olli; Fietze, Ingo; Ross, Owen A.
ORCID: https://orcid.org/0000-0003-4813-756X; Wszolek, Zbigniew K.
ORCID: https://orcid.org/0000-0001-5487-1053; Ibrahim, Abubaker; Bergmann, Melanie; Kittke, Volker
ORCID: https://orcid.org/0000-0001-8866-1388; Harrer, Philip; Dowsett, Joseph
ORCID: https://orcid.org/0000-0001-5381-2633; Chenini, Sofiene; Ostrowski, Sisse Rye
ORCID: https://orcid.org/0000-0001-5288-3851; Sørensen, Erik; Erikstrup, Christian
ORCID: https://orcid.org/0000-0001-6551-6647; Pedersen, Ole B.
ORCID: https://orcid.org/0000-0003-2312-5976; Topholm Bruun, Mie
ORCID: https://orcid.org/0000-0002-8819-5388; Nielsen, Kaspar R.; Butterworth, Adam S.
ORCID: https://orcid.org/0000-0002-6915-9015; Soranzo, Nicole
ORCID: https://orcid.org/0000-0003-1095-3852; Ouwehand, Willem H.
ORCID: https://orcid.org/0000-0002-7744-1790; Roberts, David J.; Danesh, John; Burchell, Brendan; Furlotte, Nicholas A.; Nandakumar, Priyanka; Bonnefond, Amélie; Potier, Louis; Earley, Christopher J.; Ondo, William G.; Xiong, Lan; Desautels, Alex; Perola, Markus; Vodicka, Pavel; Dina, Christian
ORCID: https://orcid.org/0000-0002-7722-7348; Stoll, Monika
ORCID: https://orcid.org/0000-0002-2711-4281; Franke, Andre
ORCID: https://orcid.org/0000-0003-1530-5811; Lieb, Wolfgang
ORCID: https://orcid.org/0000-0003-2544-4460; Stewart, Alexandre F. R.
ORCID: https://orcid.org/0000-0003-2673-9164; Shah, Svati H.; Gieger, Christian
ORCID: https://orcid.org/0000-0001-6986-9554; Peters, Annette
ORCID: https://orcid.org/0000-0001-6645-0985; Rye, David B.; Rouleau, Guy A.; Berger, Klaus; Stefansson, Hreinn; Ullum, Henrik; Stefansson, Kari; Hinds, David A.
ORCID: https://orcid.org/0000-0002-4911-803X; Di Angelantonio, Emanuele; Oexle, Konrad
ORCID: https://orcid.org/0000-0001-7447-2252 und Winkelmann, Juliane
ORCID: https://orcid.org/0000-0002-3074-599X
(2024):
Genome-wide meta-analyses of restless legs syndrome yield insights into genetic architecture, disease biology and risk prediction.
In: Nature Genetics, Bd. 56, Nr. 6: S. 1090-1099
[PDF, 3MB]

Abstract
Restless legs syndrome (RLS) affects up to 10% of older adults. Their healthcare is impeded by delayed diagnosis and insufficient treatment. To advance disease prediction and find new entry points for therapy, we performed meta-analyses of genome-wide association studies in 116,647 individuals with RLS (cases) and 1,546,466 controls of European ancestry. The pooled analysis increased the number of risk loci eightfold to 164, including three on chromosome X. Sex-specific meta-analyses revealed largely overlapping genetic predispositions of the sexes (rg = 0.96). Locus annotation prioritized druggable genes such as glutamate receptors 1 and 4, and Mendelian randomization indicated RLS as a causal risk factor for diabetes. Machine learning approaches combining genetic and nongenetic information performed best in risk prediction (area under the curve (AUC) = 0.82–0.91). In summary, we identified targets for drug development and repurposing, prioritized potential causal relationships between RLS and relevant comorbidities and risk factors for follow-up and provided evidence that nonlinear interactions are likely relevant to RLS risk prediction.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie
Medizin > Munich Cluster for Systems Neurology (SyNergy) Medizin > Klinikum der LMU München > Neurologische Klinik und Poliklinik mit Friedrich-Baur-Institut |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-122868-4 |
ISSN: | 1061-4036 |
Sprache: | Englisch |
Dokumenten ID: | 122868 |
Datum der Veröffentlichung auf Open Access LMU: | 29. Nov. 2024 15:10 |
Letzte Änderungen: | 29. Nov. 2024 15:10 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390857198 |