ORCID: https://orcid.org/0000-0002-4849-8034; Rueckel, Johannes; Döpfert, Jörg; Ling, Wen Xin; Opalka, Jens; Brem, Christian; Hesse, Nina; Ingenerf, Maria
ORCID: https://orcid.org/0000-0001-6465-4597; Koliogiannis, Vanessa; Solyanik, Olga; Hoppe, Boj F.
ORCID: https://orcid.org/0000-0001-6248-5128; Zimmermann, Hanna
ORCID: https://orcid.org/0000-0002-1476-3477; Flatz, Wilhelm; Forbrig, Robert
ORCID: https://orcid.org/0000-0002-1054-1463; Patzig, Maximilian; Rauchmann, Boris‐Stephan; Perneczky, Robert
ORCID: https://orcid.org/0000-0003-1981-7435; Peters, Oliver; Priller, Josef; Schneider, Anja; Fliessbach, Klaus; Hermann, Andreas; Wiltfang, Jens; Jessen, Frank; Düzel, Emrah; Buerger, Katharina
ORCID: https://orcid.org/0000-0002-5898-9953; Teipel, Stefan; Laske, Christoph; Synofzik, Matthis; Spottke, Annika; Ewers, Michael; Dechent, Peter; Haynes, John‐Dylan; Levin, Johannes
ORCID: https://orcid.org/0000-0001-5092-4306; Liebig, Thomas; Ricke, Jens; Ingrisch, Michael
ORCID: https://orcid.org/0000-0003-0268-9078 und Stoecklein, Sophia
(2024):
Artificial intelligence–based rapid brain volumetry substantially improves differential diagnosis in dementia.
In: Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, Bd. 16, Nr. 4, e70037
[PDF, 1MB]

Abstract
Introduction
This study evaluates the clinical value of a deep learning–based artificial intelligence (AI) system that performs rapid brain volumetry with automatic lobe segmentation and age- and sex-adjusted percentile comparisons.
Methods
Fifty-five patients—17 with Alzheimer's disease (AD), 18 with frontotemporal dementia (FTD), and 20 healthy controls—underwent cranial magnetic resonance imaging scans. Two board-certified neuroradiologists (BCNR), two board-certified radiologists (BCR), and three radiology residents (RR) assessed the scans twice: first without AI support and then with AI assistance.
Results
AI significantly improved diagnostic accuracy for AD (area under the curve −AI: 0.800, +AI: 0.926, p < 0.05), with increased correct diagnoses (p < 0.01) and reduced errors (p < 0.03). BCR and RR showed notable performance gains (BCR: p < 0.04; RR: p < 0.02). For the diagnosis FTD, overall consensus (p < 0.01), BCNR (p < 0.02), and BCR (p < 0.05) recorded significantly more correct diagnoses.
Discussion
AI-assisted volumetry improves diagnostic performance in differentiating AD and FTD, benefiting all reader groups, including BCNR.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Munich Cluster for Systems Neurology (SyNergy)
Medizin > Institut für Schlaganfall- und Demenzforschung (ISD) Medizin > Klinikum der LMU München > Neurologische Klinik und Poliklinik mit Friedrich-Baur-Institut Medizin > Klinikum der LMU München > Klinik und Poliklinik für Radiologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-123299-7 |
ISSN: | 2352-8729 |
Sprache: | Englisch |
Dokumenten ID: | 123299 |
Datum der Veröffentlichung auf Open Access LMU: | 23. Dez. 2024 11:21 |
Letzte Änderungen: | 23. Dez. 2024 11:21 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390857198 |