ORCID: https://orcid.org/0000-0002-6890-997X; Draganov, Andrew
ORCID: https://orcid.org/0000-0002-1617-4166; Hohma, Ellen
ORCID: https://orcid.org/0000-0002-5235-6856; Jahn, Philipp
ORCID: https://orcid.org/0009-0002-0059-9183; Frey, Christian M.M.
ORCID: https://orcid.org/0000-0003-2458-6651 und Assent, Ira
ORCID: https://orcid.org/0000-0002-1091-9948
(2023):
Connecting the Dots -- Density-Connectivity Distance unifies DBSCAN, k-Center and Spectral Clustering.
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), Long Beach, CA, 06. - 10. August 2023.
Singh, Ambuj (Hrsg.):
In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
New York: Association for Computing Machinery. S. 80-92
[PDF, 2MB]

Abstract
Despite the popularity of density-based clustering, its procedural definition makes it difficult to analyze compared to clustering methods that minimize a loss function. In this paper, we reformulate DBSCAN through a clean objective function by introducing the density-connectivity distance (dc-dist), which captures the essence of density-based clusters by endowing the minimax distance with the concept of density. This novel ultrametric allows us to show that DBSCAN, k-center, and spectral clustering are equivalent in the space given by the dc-dist, despite these algorithms being perceived as fundamentally different in their respective literatures. We also verify that finding the pairwise dc-dists gives DBSCAN clusterings across all epsilon-values, simplifying the problem of parameterizing density-based clustering. We conclude by thoroughly analyzing density-connectivity and its properties -- a task that has been elusive thus far in the literature due to the lack of formal tools. Our code recreates every experiment below: https://github.com/Andrew-Draganov/dc_dist
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
URN: | urn:nbn:de:bvb:19-epub-123737-2 |
ISBN: | 979-8-4007-0103-0 |
Ort: | New York |
Sprache: | Englisch |
Dokumenten ID: | 123737 |
Datum der Veröffentlichung auf Open Access LMU: | 17. Feb. 2025 11:22 |
Letzte Änderungen: | 17. Feb. 2025 11:22 |